Home  

Random  

Nearby  



Log in  



Settings  



Donate  



About Wikipedia  

Disclaimers  



Wikipedia





4-Nitroaniline





Article  

Talk  



Language  

Watch  

Edit  





4-Nitroaniline, p-nitroanilineor1-amino-4-nitrobenzene is an organic compound with the formula C6H6N2O2. A yellow solid, it is one of three isomers of nitroaniline. It is an intermediate in the production of dyes, antioxidants, pharmaceuticals, gasoline, gum inhibitors, poultry medicines, and as a corrosion inhibitor.[3]

4-Nitroaniline
Skeletal formula of p-nitroaniline
Ball-and-stick model of the p-nitroaniline molecule
Names
Preferred IUPAC name

4-Nitroaniline

Systematic IUPAC name

4-Nitrobenzenamine

Other names

p-Nitroaniline
1-Amino-4-nitrobenzene
p-Nitrophenylamine

Identifiers

CAS Number

3D model (JSmol)

Beilstein Reference

508690
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.002.555 Edit this at Wikidata
EC Number
  • 202-810-1

Gmelin Reference

27331
KEGG

PubChem CID

RTECS number
  • BY7000000
UNII
UN number 1661

CompTox Dashboard (EPA)

  • InChI=1S/C6H6N2O2/c7-5-1-3-6(4-2-5)8(9)10/h1-4H,7H2 ☒N

    Key: TYMLOMAKGOJONV-UHFFFAOYSA-N ☒N

  • InChI=1/C6H6N2O2/c7-5-1-3-6(4-2-5)8(9)10/h1-4H,7H2

    Key: TYMLOMAKGOJONV-UHFFFAOYAW

  • c1cc(ccc1N)N(=O)=O

Properties

Chemical formula

C6H6N2O2
Molar mass 138.12 g/mol
Appearance yellow or brown powder
Odor faint, ammonia-like
Density 1.437 g/ml, solid
Melting point 146 to 149 °C (295 to 300 °F; 419 to 422 K) (lit.)
Boiling point 332 °C (630 °F; 605 K)

Solubility in water

0.8 mg/ml at 18.5 °C (IPCS)
Vapor pressure 0.00002 mmHg (20°C)[1]

Magnetic susceptibility (χ)

-66.43·10−6cm3/mol
Hazards
Occupational safety and health (OHS/OSH):

Main hazards

Toxic
GHS labelling:

Pictograms

GHS06: ToxicGHS08: Health hazard

Signal word

Warning

Hazard statements

H301, H311, H331, H373, H412

Precautionary statements

P260, P261, P264, P270, P271, P273, P280, P301+P310, P302+P352, P304+P340, P311, P312, P314, P321, P322, P330, P361, P363, P403+P233, P405, P501
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
2
1
0
Flash point 199 °C (390 °F; 472 K)
Lethal dose or concentration (LD, LC):

LD50 (median dose)

3249 mg/kg (rat, oral)
750 mg/kg (rat, oral)
450 mg/kg (guinea pig, oral)
810 mg/kg (mouse, oral)[2]
NIOSH (US health exposure limits):

PEL (Permissible)

TWA 6 mg/m3 (1 ppm) [skin][1]

REL (Recommended)

TWA 3 mg/m3 [skin][1]

IDLH (Immediate danger)

300 mg/m3[1]
Safety data sheet (SDS) JT Baker
Related compounds

Related compounds

2-Nitroaniline, 3-Nitroaniline

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

☒N verify (what is checkY☒N ?)

Infobox references

Synthesis

edit

4-Nitroaniline is produced industrially via the amination of 4-nitrochlorobenzene:[3]

ClC6H4NO2 + 2 NH3 → H2NC6H4NO2 + NH4Cl

Below is a laboratory synthesis of 4-nitroaniline from aniline. The key step in this reaction sequence is an electrophilic aromatic substitution to install the nitro group para to the amino group. The amino group can be easily protonated and become a meta director. Therefore, a protection of the acetyl group is required. After this reaction, a separation must be performed to remove 2-nitroaniline, which is also formed in a small amount during the reaction.[4]
 

Applications

edit

4-Nitroaniline is mainly consumed industrially as a precursor to p-phenylenediamine, an important dye component. The reduction is effected using iron metal and by catalytic hydrogenation.[3]

It is a starting material for the synthesis of Para Red, the first azo dye:[5]

 
Synthesis of Para Red

Laboratory use

edit

Nitroaniline undergoes diazotization, which allows access to 1,4-dinitrobenzene[6] and nitrophenylarsonic acid.[7] With phosgene, it converts to 4-nitrophenylisocyanate.[8] [9]

Carbon snake demonstration

edit

When heated with sulfuric acid, it dehydrates and polymerizes explosively into a rigid foam.[10]

InCarbon snake demo, paranitroaniline can be used instead of sugar, if the experiment is allowed to proceed under an obligatory fumehood.[11] With this method the reaction phase prior to the black snake's appearance is longer, but once complete, the black snake itself rises from the container very rapidly.[12] This reaction may cause an explosion if too much sulfuric acid is used.[13]

Toxicity

edit

The compound is toxic by way of inhalation, ingestion, and absorption, and should be handled with care. Its LD50 in rats is 750.0 mg/kg when administered orally. 4-Nitroaniline is particularly harmful to all aquatic organisms, and can cause long-term damage to the environment if released as a pollutant.[14]

See also

edit

References

edit
  1. ^ a b c d NIOSH Pocket Guide to Chemical Hazards. "#0449". National Institute for Occupational Safety and Health (NIOSH).
  • ^ "p-Nitroaniline". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  • ^ a b c Booth, Gerald (2003-03-11). "Nitro Compounds, Aromatic". In Wiley-VCH (ed.). Ullmann's Encyclopedia of Industrial Chemistry (1 ed.). Wiley. doi:10.1002/14356007.a17_411. ISBN 978-3-527-30385-4.]
  • ^ Mohrig, J.R.; Morrill, T.C.; Hammond, C.N.; Neckers, D.C. (1997). "Synthesis 5: Synthesis of the Dye Para Red from Aniline". Experimental Organic Chemistry. New York, NY: Freeman. pp. 456–467. Archived from the original on 2020-09-15. Retrieved 2007-07-18.
  • ^ Williamson, Kenneth L. (2002). Macroscale and Microscale Organic Experiments, Fourth Edition. Houghton-Mifflin. ISBN 0-618-19702-8.
  • ^ Starkey, E. B. (1939). "p-DINITROBENZENE". Organic Syntheses. 19: 40. doi:10.15227/orgsyn.019.0040.
  • ^ "p-NITROPHENYLARSONIC ACID". Organic Syntheses. 26: 60. 1946. doi:10.15227/orgsyn.026.0060.
  • ^ Shriner, R. L.; Horne, W. H.; Cox, R. F. B. (1934). "p-NITROPHENYL ISOCYANATE". Organic Syntheses. 14: 72. doi:10.15227/orgsyn.014.0072.
  • ^ "2,6-DIIODO-p-NITROANILINE". Organic Syntheses. 12: 28. 1932. doi:10.15227/orgsyn.012.0028.
  • ^ Poshkus, A. C.; Parker, J. A. (1970). "Studies on nitroaniline–sulfuric acid compositions: Aphrogenic pyrostats". Journal of Applied Polymer Science. 14 (8): 2049–2064. doi:10.1002/app.1970.070140813.
  • ^ Summerlin, Lee R.; Ealy, James L. (1988). "Experiment 100: Dehydration of p-Nitroaniline: Sanke and Puff". Chemical Demonstrations: A Sourcebook for Teachers Volume 1 (2nd ed.). American Chemical Society. p. 171. ISBN 978-0-841-21481-1.
  • ^ "Carbon Snake: demonstrating the dehydration power of concentrated sulfuric acid". communities.acs.org. 2013-06-06. Retrieved 2022-01-31.
  • ^ Making a carbon snake with P-Nitroaniline, retrieved 2022-01-31
  • ^ "4-Nitroaniline". St. Louis, Missouri: Sigma-Aldrich. December 18, 2020.
  • edit

    Retrieved from "https://en.wikipedia.org/w/index.php?title=4-Nitroaniline&oldid=1201492482"
     



    Last edited on 31 January 2024, at 19:26  





    Languages

     


    تۆرکجه
    Español
    Esperanto
    فارسی
    Français
    Italiano
    Magyar
    Nederlands

    Português
    Română
    Српски / srpski
    Srpskohrvatski / српскохрватски
    Suomi
    Türkçe
    Українська

     

    Wikipedia


    This page was last edited on 31 January 2024, at 19:26 (UTC).

    Content is available under CC BY-SA 4.0 unless otherwise noted.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Terms of Use

    Desktop