Home  

Random  

Nearby  



Log in  



Settings  



Donate  



About Wikipedia  

Disclaimers  



Wikipedia





Acetylacetone





Article  

Talk  



Language  

Watch  

Edit  





Acetylacetone is an organic compound with the chemical formula CH3−C(=O)−CH2−C(=O)−CH3. It is classified as a 1,3-diketone. It exists in equilibrium with a tautomer CH3−C(=O)−CH=C(−OH)−CH3. The mixture is a colorless liquid. These tautomers interconvert so rapidly under most conditions that they are treated as a single compound in most applications.[2] Acetylacetone is a building block for the synthesis of many coordination complexes as well as heterocyclic compounds.

Acetylacetone
Skeletal structures of both tautomers
Ball-and-stick model of the enol tautomer
Ball-and-stick model of the enol tautomer
Ball-and-stick model of the keto tautomer
Ball-and-stick model of the keto tautomer
Space-filling model of the enol tautomer
Space-filling model of the enol tautomer
Space-filling model of the keto tautomer
Space-filling model of the keto tautomer
Names
IUPAC names

(3Z)-4-Hydroxy-3-penten-2-one (enol form)
Pentane-2,4-dione (keto form)

Other names
  • Hacac
  • 2,4-Pentanedione
  • Identifiers

    CAS Number

    3D model (JSmol)

  • Interactive image
  • Enol form: Interactive image
  • Beilstein Reference

    741937
    ChEBI
    ChEMBL
    ChemSpider
    ECHA InfoCard 100.004.214 Edit this at Wikidata
    EC Number
    • 204-634-0

    Gmelin Reference

    2537
    KEGG

    PubChem CID

    RTECS number
    • SA1925000
    UNII
    UN number 2310

    CompTox Dashboard (EPA)

    • InChI=1S/C5H8O2/c1-4(6)3-5(2)7/h3H2,1-2H3 checkY

      Key: YRKCREAYFQTBPV-UHFFFAOYSA-N checkY

    • InChI=1/C5H8O2/c1-4(6)3-5(2)7/h3H2,1-2H3

      Key: YRKCREAYFQTBPV-UHFFFAOYAO

    • O=C(C)CC(=O)C

    • CC(=O)CC(=O)C

    • Enol form: CC(O)=CC(=O)C

    Properties

    Chemical formula

    C5H8O2
    Molar mass 100.117 g·mol−1
    Appearance Colorless liquid
    Density 0.975 g/mL[1]
    Melting point −23 °C (−9 °F; 250 K)
    Boiling point 140 °C (284 °F; 413 K)

    Solubility in water

    16 g/(100 mL)

    Magnetic susceptibility (χ)

    −54.88·10−6cm3/mol
    Hazards
    GHS labelling:

    Pictograms

    GHS02: FlammableGHS06: ToxicGHS07: Exclamation markGHS08: Health hazard

    Signal word

    Danger

    Hazard statements

    H226, H302, H311, H320, H331, H335, H341, H370, H412

    Precautionary statements

    P201, P202, P210, P233, P240, P241, P242, P243, P260, P261, P264, P270, P271, P273, P280, P281, P301+P312, P302+P352, P303+P361+P353, P304+P340, P305+P351+P338, P307+P311, P308+P313, P311, P312, P321, P322, P330, P337+P313, P361, P363, P370+P378, P403+P233, P403+P235, P405, P501
    NFPA 704 (fire diamond)
    NFPA 704 four-colored diamondHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 2: Must be moderately heated or exposed to relatively high ambient temperature before ignition can occur. Flash point between 38 and 93 °C (100 and 200 °F). E.g. diesel fuelInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
    2
    2
    0
    Flash point 34 °C (93 °F; 307 K)

    Autoignition
    temperature

    340 °C (644 °F; 613 K)
    Explosive limits 2.4–11.6%

    Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

    checkY verify (what is checkY☒N ?)

    Infobox references

    Properties

    edit

    Tautomerism

    edit
    Solvent Kketo→enol
    Gas phase 11.7
    Cyclohexane 42
    Toluene 10
    THF 7.2
    CDCl3[3] 5.7
    DMSO 2
    Water 0.23
     

    The keto and enol tautomers of acetylacetone coexist in solution. The enol form has C2v symmetry, meaning the hydrogen atom is shared equally between the two oxygen atoms.[4] In the gas phase, the equilibrium constant, Kketo→enol, is 11.7, favoring the enol form. The two tautomeric forms can be distinguished by NMR spectroscopy, IR spectroscopy and other methods.[5][6]

    The equilibrium constant tends to be high in nonpolar solvents; when Kketo→enol is equal or greater than 1, the enol form is favoured. The keto form becomes more favourable in polar, hydrogen-bonding solvents, such as water.[7] The enol form is a vinylogous analogue of a carboxylic acid.[citation needed]

    Acid–base properties

    edit
    Solvent T/°C pKa[8]
    40% ethanol/water 30 9.8
    70% dioxane/water 28 12.5
    80% DMSO/water 25 10.16
    DMSO 25 13.41

    Acetylacetone is a weak acid. It forms the acetylacetonate anion C5H7O2 (commonly abbreviated acac):

    C5H8O2 ⇌ C5H7O2 + H+
     
    The structure of the acetylacetonate anion (acac)

    In the acetylacetonate anion, both C-O bonds are equivalent. Both C-C central bonds are equivalent as well, with one hydrogen atom bonded to the central carbon atom (the C3 atom). Those two equivalencies are because there is a resonance between the four bonds in the O-C2-C3-C4-O linkage in the acetylacetonate anion, where the bond order of those four bonds is about 1.5. Both oxygen atoms equally share the negative charge. The acetylacetonate anion is a bidentate ligand.

    IUPAC recommended pKa values for this equilibrium in aqueous solution at 25 °C are 8.99 ± 0.04 (I = 0), 8.83 ± 0.02 (I = 0.1 M NaClO4) and 9.00 ± 0.03 (I = 1.0 M NaClO4; I = Ionic strength).[9] Values for mixed solvents are available. Very strong bases, such as organolithium compounds, will deprotonate acetylacetone twice. The resulting dilithium species can then be alkylated at the carbon atom at the position 1.

    Preparation

    edit

    Acetylacetone is prepared industrially by the thermal rearrangement of isopropenyl acetate.[10]

     

    Laboratory routes to acetylacetone also begin with acetone. Acetone and acetic anhydride ((CH3C(O))2O) upon the addition of boron trifluoride (BF3) catalyst:[11]

    (CH3C(O))2O + CH3C(O)CH3 → CH3C(O)CH2C(O)CH3

    A second synthesis involves the base-catalyzed condensation (e.g., by sodium ethoxide CH3CH2ONa+) of acetone and ethyl acetate, followed by acidification of the sodium acetylacetonate (e.g., by hydrogen chloride HCl):[11]

    CH3CH2ONa+ + CH3C(O)OCH2CH3 + CH3C(O)CH3 → Na+[CH3C(O)CHC(O)CH3] + 2 CH3CH2OH
    Na+[CH3C(O)CHC(O)CH3] + HCl → CH3C(O)CH2C(O)CH3 + NaCl

    Because of the ease of these syntheses, many analogues of acetylacetonates are known. Some examples are benzoylacetone, dibenzoylmethane (dbaH)[clarification needed] and tert-butyl analogue 2,2,6,6-tetramethyl-3,5-heptanedione. Trifluoroacetylacetone and hexafluoroacetylacetonate are also used to generate volatile metal complexes.

    Reactions

    edit

    Condensations

    edit

    Acetylacetone is a versatile bifunctional precursor to heterocycles because both keto groups may undergo condensation. For example, condensation with Hydrazine produces pyrazoles while condensation with Urea provides pyrimidines. Condensation with two aryl- or alkylamines gives NacNacs, wherein the oxygen atoms in acetylacetone are replaced by NR (R = aryl, alkyl).

    Coordination chemistry

    edit
     
    Aball-and-stick model of VO(acac)2

    Sodium acetylacetonate, Na(acac), is the precursor to many acetylacetonate complexes. A general method of synthesis is to treat a metal salt with acetylacetone in the presence of a base:[12]

    MBz + z Hacac ⇌ M(acac)z + zBH

    Both oxygen atoms bind to the metal to form a six-membered chelate ring. In some cases the chelate effect is so strong that no added base is needed to form the complex.

    Biodegradation

    edit

    The enzyme acetylacetone dioxygenase cleaves the carbon-carbon bond of acetylacetone, producing acetate and 2-oxopropanal. The enzyme is iron(II)-dependent, but it has been proven to bind to zinc as well. Acetylacetone degradation has been characterized in the bacterium Acinetobacter johnsonii.[13]

    C5H8O2 + O2C2H4O2 + C3H4O2

    References

    edit
    1. ^ "05581: Acetylacetone". Sigma-Aldrich.
  • ^ Thomas M. Harris (2001). "2,4-Pentanedione". e-EROS Encyclopedia of Reagents for Organic Synthesis. doi:10.1002/047084289X.rp030. ISBN 0471936235.
  • ^ Smith, Kyle T.; Young, Sherri C.; DeBlasio, James W.; Hamann, Christian S. (12 April 2016). "Measuring Structural and Electronic Effects on Keto–Enol Equilibrium in 1,3-Dicarbonyl Compounds". Journal of Chemical Education. 93 (4): 790–794. doi:10.1021/acs.jchemed.5b00170.
  • ^ Caminati, W.; Grabow, J.-U. (2006). "The C2v Structure of Enolic Acetylacetone". Journal of the American Chemical Society. 128 (3): 854–857. doi:10.1021/ja055333g. PMID 16417375.
  • ^ Manbeck, Kimberly A.; Boaz, Nicholas C.; Bair, Nathaniel C.; Sanders, Allix M. S.; Marsh, Anderson L. (2011). "Substituent Effects on Keto–Enol Equilibria Using NMR Spectroscopy". Journal of Chemical Education. 88 (10): 1444–1445. Bibcode:2011JChEd..88.1444M. doi:10.1021/ed1010932.
  • ^ Yoshida, Z.; Ogoshi, H.; Tokumitsu, T. (1970). "Intramolecular hydrogen bond in enol form of 3-substituted-2,4-pentanedione". Tetrahedron. 26 (24): 5691–5697. doi:10.1016/0040-4020(70)80005-9.
  • ^ Reichardt, Christian (2003). Solvents and Solvent Effects in Organic Chemistry (3rd ed.). Wiley-VCH. ISBN 3-527-30618-8.
  • ^ IUPAC SC-Database Archived 2017-06-19 at the Wayback Machine A comprehensive database of published data on equilibrium constants of metal complexes and ligands
  • ^ Stary, J.; Liljenzin, J. O. (1982). "Critical evaluation of equilibrium constants involving acetylacetone and its metal chelates" (PDF). Pure and Applied Chemistry. 54 (12): 2557–2592. doi:10.1351/pac198254122557. S2CID 96848983.
  • ^ Siegel, Hardo; Eggersdorfer, Manfred (2002). "Ketones". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a15_077. ISBN 9783527306732.
  • ^ a b Denoon, C. E. Jr.; Adkins, Homer; Rainey, James L. (1940). "Acetylacetone". Organic Syntheses. 20: 6. doi:10.15227/orgsyn.020.0006.
  • ^ O'Brien, Brian. "Co(tfa)3 & Co(acac)3 handout" (PDF). Gustavus Adolphus College.
  • ^ Straganz, G.D.; Glieder, A.; Brecker, L.; Ribbons, D.W.; Steiner, W. (2003). "Acetylacetone-cleaving enzyme Dke1: a novel C–C-bond-cleaving enzyme from Acinetobacter johnsonii". Biochemical Journal. 369 (3): 573–581. doi:10.1042/BJ20021047. PMC 1223103. PMID 12379146.
  • edit

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Acetylacetone&oldid=1226434847"
     



    Last edited on 30 May 2024, at 16:33  





    Languages

     


    العربية
    Azərbaycanca
    تۆرکجه
    Čeština
    Dansk
    Deutsch
    Español
    Esperanto
    فارسی
    Français

    Bahasa Indonesia
    Italiano
    Latviešu
    Lietuvių
    Nederlands

    Polski
    Română
    Русский
    Slovenčina
    Српски / srpski
    Srpskohrvatski / српскохрватски
    Suomi
    Svenska
    ி
    Українська

     

    Wikipedia


    This page was last edited on 30 May 2024, at 16:33 (UTC).

    Content is available under CC BY-SA 4.0 unless otherwise noted.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Terms of Use

    Desktop