Home  

Random  

Nearby  



Log in  



Settings  



Donate  



About Wikipedia  

Disclaimers  



Wikipedia





Anthraquinone





Article  

Talk  



Language  

Watch  

Edit  





Anthraquinone, also called anthracenedioneordioxoanthracene, is an aromatic organic compound with formula C
14
H
8
O
2
. Several isomers exist but these terms usually refer to 9,10-anthraquinone (IUPAC: 9,10-dioxoanthracene) wherein the keto groups are located on the central ring. It is used as a digester additive to wood pulp for papermaking. Many anthraquinone derivatives are generated by organisms or synthesised industrially for use as dyes, pharmaceuticals, and catalysts. Anthraquinone is a yellow, highly crystalline solid, poorly solubleinwater but soluble in hot organic solvents. It is almost completely insoluble in ethanol near room temperature but 2.25 g will dissolve in 100 g of boiling ethanol. It is found in nature as the rare mineral hoelite.

9,10-Anthraquinone[1]
Names
Preferred IUPAC name

Anthracene-9,10-dione[2]

Other names
  • Anthraquinone
  • 9,10-Anthracenedione
  • Anthradione
  • 9,10-Anthrachinon
  • Anthracene-9,10-quinone
  • 9,10-Dihydro-9,10-dioxoanthracene
  • Hoelite
  • Morkit
  • Corbit
  • Identifiers

    CAS Number

    3D model (JSmol)

    Beilstein Reference

    390030
    ChEBI
    ChEMBL
    ChemSpider
    ECHA InfoCard 100.001.408 Edit this at Wikidata

    Gmelin Reference

    102870
    KEGG

    PubChem CID

    RTECS number
    • CB4725000
    UNII
    UN number 3143

    CompTox Dashboard (EPA)

    • InChI=1S/C14H8O2/c15-13-9-5-1-2-6-10(9)14(16)12-8-4-3-7-11(12)13/h1-8H

      Key: RZVHIXYEVGDQDX-UHFFFAOYSA-N

    • O=C1c2ccccc2C(=O)c3ccccc13

    Properties

    Chemical formula

    C14H8O2
    Molar mass 208.216 g·mol−1
    Appearance Yellow solid
    Density 1.438 g/cm3[1]
    Melting point 284.8 °C (544.6 °F; 558.0 K)[1]
    Boiling point 377 °C (711 °F; 650 K)[1]

    Solubility in water

    Insoluble
    Hazards
    Occupational safety and health (OHS/OSH):

    Main hazards

    possible carcinogen
    GHS labelling:

    Pictograms

    GHS08: Health hazard

    Signal word

    Danger

    Hazard statements

    H350

    Precautionary statements

    P201, P202, P281, P308+P313, P405, P501
    Flash point 185 °C (365 °F; 458 K)
    Related compounds

    Related compounds

    quinone,
    anthracene

    Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

    ☒N verify (what is checkY☒N ?)

    Infobox references

    Synthesis

    edit

    There are several current industrial methods to produce 9,10-anthraquinone:

    1. The oxidation of anthracene. Chromium(VI) is the typical oxidant.
    2. The Friedel-Crafts reactionofbenzene and phthalic anhydride in presence of AlCl3. o-Benzoylbenzoic acid is an intermediate. This reaction is useful for producing substituted anthraquinones.
    3. The Diels-Alder reactionofnaphthoquinone and butadiene followed by oxidative dehydrogenation.
    4. The acid-catalyzed dimerization of styrene to give a 1,3-diphenylbutene, which then can be transformed to the anthraquinone.[3] This process was pioneered by BASF.

    It also arises via the Rickert–Alder reaction, a retro-Diels–Alder reaction.

    Reactions

    edit

    Hydrogenation gives dihydroanthraquinone (anthrahydroquinone). Reduction with copper gives anthrone.[4] Sulfonation with sulfuric acid gives anthroquinone-1-sulfonic acid,[5] which reacts with sodium chlorate to give 1-chloroanthaquinone.[6]

    Applications

    edit

    Digester additive in papermaking

    edit

    9,10-Anthraquinone is used as a digester additive in production of paper pulpbyalkaline processes, like the kraft, the alkaline sulfite or the Soda-AQ processes. The anthraquinone is a redox catalyst. The reaction mechanism may involve single electron transfer (SET).[7] The anthraquinone oxidizes the reducing end of polysaccharides in the pulp, i.e., cellulose and hemicellulose, and thereby protecting it from alkaline degradation (peeling). The anthraquinone is reduced to 9,10-dihydroxyanthracene which then can react with lignin. The lignin is degraded and becomes more watersoluble and thereby more easy to wash away from the pulp, while the anthraquinone is regenerated. This process gives an increase in yield of pulp, typically 1–3% and a reduction in kappa number.[8]

    Niche uses

    edit

    9,10-anthraquinone is used as a bird repellant on seeds, and as a gas generator in satellite balloons.[9] It has also been mixed with lanolin and used as a wool spray to protect sheep flocks against kea attacks in New Zealand.[10]

    Other isomers

    edit

    Several other isomers of anthraquinone exist, including the 1,2-, 1,4-, and 2,6-anthraquinones. They are of minor importance compared to 9,10-anthraquinone.

    Safety

    edit

    Anthraquinone has no recorded LD50, probably because it is so insoluble in water.

    In terms of metabolism of substituted anthraquinones, the enzyme encoded by the gene UGT1A8 has glucuronidase activity with many substrates including anthraquinones.[11]

    See also

    edit

    References

    edit
    1. ^ a b c d Haynes, William M., ed. (2016). CRC Handbook of Chemistry and Physics (97th ed.). CRC Press. p. 3.28. ISBN 9781498754293.
  • ^ International Union of Pure and Applied Chemistry (2014). Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013. The Royal Society of Chemistry. p. 724. doi:10.1039/9781849733069. ISBN 978-0-85404-182-4.
  • ^ Vogel, A. "Anthraquinone". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a02_347. ISBN 978-3527306732.
  • ^ Macleod, L. C.; Allen, C. F. H. (1934). "Benzanthrone". Organic Syntheses. 14: 4. doi:10.15227/orgsyn.014.0004.
  • ^ Scott, W. J.; Allen, C. F. H. (1938). "Potassium Anthraquinone-α-Sulfonate". Organic Syntheses. 18: 72. doi:10.15227/orgsyn.018.0072.
  • ^ Scott, W. J.; Allen, C. F. H. (1938). "α-Chloroanthraquinone". Organic Syntheses. 18: 15. doi:10.15227/orgsyn.018.0015.
  • ^ Samp, J. C. (2008). A comprehensive mechanism for anthraquinone mass transfer in alkaline pulping (Thesis). Georgia Institute of Technology. p. 30. hdl:1853/24767.
  • ^ Sturgeoff, L. G.; Pitl, Y. (1997) [1993]. "Low Kappa Pulping without Capital Investment". In Goyal, G. C. (ed.). Anthraquinone Pulping. TAPPI Press. pp. 3–9. ISBN 0-89852-340-0.
  • ^ "www.americanheritage.com". Archived from the original on 2009-06-09. Retrieved 2009-09-22.
  • ^ Dudding, Adam (29 July 2012). "How to solve a problem like a kea". Sunday Star Times. New Zealand. Retrieved 11 November 2014.
  • ^ Ritter, J. K.; Chen, F.; Sheen, Y. Y.; Tran, H. M.; Kimura, S.; Yeatman, M. T.; Owens, I. S. (1992). "A Novel Complex Locus UGT1 Encodes Human Bilirubin, Phenol, and other UDP-Glucuronosyltransferase Isozymes with Identical Carboxyl Termini" (PDF). Journal of Biological Chemistry. 267 (5): 3257–3261. doi:10.1016/S0021-9258(19)50724-4. PMID 1339448.
  • edit

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Anthraquinone&oldid=1228456164"
     



    Last edited on 11 June 2024, at 09:47  





    Languages

     


    العربية
    Azərbaycanca
    Беларуская
    Català
    Čeština
    Deutsch
    Eesti
    Ελληνικά
    Español
    Esperanto
    فارسی
    Français

    Հայերեն
    Hrvatski
    Bahasa Indonesia
    Italiano
    Қазақша
    Кыргызча
    Magyar
    Македонски

    Bahasa Melayu
    Nederlands

    Norsk bokmål
    Norsk nynorsk
    Oʻzbekcha / ўзбекча
    Polski
    Português
    Română
    Русский
    Slovenčina
    Српски / srpski
    Srpskohrvatski / српскохрватски
    Suomi
    Svenska
    Тоҷикӣ
    Українська

     

    Wikipedia


    This page was last edited on 11 June 2024, at 09:47 (UTC).

    Content is available under CC BY-SA 4.0 unless otherwise noted.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Terms of Use

    Desktop