Home  

Random  

Nearby  



Log in  



Settings  



Donate  



About Wikipedia  

Disclaimers  



Wikipedia





Argument of periapsis





Article  

Talk  



Language  

Watch  

Edit  





The argument of periapsis (also called argument of perifocusorargument of pericenter), symbolized as ω (omega), is one of the orbital elements of an orbiting body. Parametrically, ω is the angle from the body's ascending node to its periapsis, measured in the direction of motion.

Fig. 1: Diagram of orbital elements, including the argument of periapsis (ω).

For specific types of orbits, terms such as argument of perihelion (for heliocentric orbits), argument of perigee (for geocentric orbits), argument of periastron (for orbits around stars), and so on, may be used (see apsis for more information).

An argument of periapsis of 0° means that the orbiting body will be at its closest approach to the central body at the same moment that it crosses the plane of reference from South to North. An argument of periapsis of 90° means that the orbiting body will reach periapsis at its northmost distance from the plane of reference.

Adding the argument of periapsis to the longitude of the ascending node gives the longitude of the periapsis. However, especially in discussions of binary stars and exoplanets, the terms "longitude of periapsis" or "longitude of periastron" are often used synonymously with "argument of periapsis".

Calculation

edit

Inastrodynamics the argument of periapsis ω can be calculated as follows:

 
Ifez < 0 then ω → 2πω.

where:

In the case of equatorial orbits (which have no ascending node), the argument is strictly undefined. However, if the convention of setting the longitude of the ascending node Ω to 0 is followed, then the value of ω follows from the two-dimensional case:  

If the orbit is clockwise (i.e. (r × v)z < 0) then ω → 2πω.

where:

In the case of circular orbits it is often assumed that the periapsis is placed at the ascending node and therefore ω = 0. However, in the professional exoplanet community, ω = 90° is more often assumed for circular orbits, which has the advantage that the time of a planet's inferior conjunction (which would be the time the planet would transit if the geometry were favorable) is equal to the time of its periastron.[1][2][3]

See also

edit

References

edit
  1. ^ Iglesias-Marzoa, Ramón; López-Morales, Mercedes; Jesús Arévalo Morales, María (2015). "Thervfit Code: A Detailed Adaptive Simulated Annealing Code for Fitting Binaries and Exoplanets Radial Velocities". Publications of the Astronomical Society of the Pacific. 127 (952): 567–582. arXiv:1505.04767. Bibcode:2015PASP..127..567I. doi:10.1086/682056.
  • ^ Kreidberg, Laura (2015). "Batman: BAsic Transit Model cAlculatioN in Python". Publications of the Astronomical Society of the Pacific. 127 (957): 1161–1165. arXiv:1507.08285. Bibcode:2015PASP..127.1161K. doi:10.1086/683602. S2CID 7954832.
  • ^ Eastman, Jason; Gaudi, B. Scott; Agol, Eric (2013). "EXOFAST: A Fast Exoplanetary Fitting Suite in IDL". Publications of the Astronomical Society of the Pacific. 125 (923): 83. arXiv:1206.5798. Bibcode:2013PASP..125...83E. doi:10.1086/669497. S2CID 118627052.
  • edit

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Argument_of_periapsis&oldid=1226032384"
     



    Last edited on 28 May 2024, at 05:14  





    Languages

     


    Afrikaans
    العربية
    Български
    Català
    Čeština
    Dansk
    Deutsch
    Ελληνικά
    Español
    Esperanto
    Euskara
    فارسی
    Français

    Հայերեն
    ि
    Hrvatski
    Bahasa Indonesia
    Italiano

    Latina
    Latviešu
    Lietuvių
    Македонски
    Bahasa Melayu
    Nederlands

    Norsk bokmål
    Norsk nynorsk
    Polski
    Português
    Română
    Русский
    Simple English
    Slovenčina
    Slovenščina
    Српски / srpski
    Srpskohrvatski / српскохрватски
    Sunda
    Suomi
    Svenska

    Türkçe
    Tiếng Vit

     

    Wikipedia


    This page was last edited on 28 May 2024, at 05:14 (UTC).

    Content is available under CC BY-SA 4.0 unless otherwise noted.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Terms of Use

    Desktop