Home  

Random  

Nearby  



Log in  



Settings  



Donate  



About Wikipedia  

Disclaimers  



Wikipedia





Dilithium





Article  

Talk  



Language  

Watch  

Edit  





Dilithium, Li2, is a strongly electrophilic, diatomic molecule comprising two lithium atoms covalently bonded together. Li2 is known in the gas phase. It has a bond order of 1, an internuclear separation of 267.3 pm and a bond energy of 102 kJ/mol or 1.06 eV in each bond.[1] The electron configuration of Li2 may be written as σ2.

Dilithium
Wireframe model of dilithium
Spacefill model of dilithium
Names
IUPAC name

Dilithium(Li—Li)[citation needed]

Identifiers

CAS Number

3D model (JSmol)

ChemSpider

PubChem CID

CompTox Dashboard (EPA)

  • InChI=1S/2Li checkY

    Key: SMBQBQBNOXIFSF-UHFFFAOYSA-N checkY

  • [Li][Li]

Properties

Chemical formula

Li2
Molar mass 13.88 g·mol−1

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

☒N verify (what is checkY☒N ?)

Infobox references

Being the lightest stable neutral homonuclear diatomic molecule after H2, and the helium dimer, dilithium is an extremely important model system for studying fundamentals of physics, chemistry, and electronic structure theory. It is the most thoroughly characterized compound in terms of the accuracy and completeness of the empirical potential energy curves of its electronic states. Analytic empirical potential energy curves have been constructed for the X-state,[2] a-state,[3] A-state,[4] c-state,[5] B-state,[6] 2d-state,[7] l-state,[7] E-state,[8] and the F-state.[9] The most reliable of these potential energy curves are of the Morse/Long-range variety (see entries in the table below).[2][3][6][4][5]

Li2 potentials are often used to extract atomic properties. For example, the C3 value for atomic lithium extracted from the A-state potential of Li2 by Le Roy et al. in [2] is more precise than any previously measured atomic oscillator strength.[10] This lithium oscillator strength is related to the radiative lifetime of atomic lithium and is used as a benchmark for atomic clocks and measurements of fundamental constants.

Electronic state Spectroscopic symbol Term symbol Bond length (pm) Dissociation energy (cm−1) Bound vibrational levels References
1 (Ground) X 11Σg+ 267
.298 74(19)[2] 8 516
.780 0(23)[2] 39[2] [2]
2 a 13Σu+ 417
.000 6(32)[3] 333
.779 5(62)[3] 11[3] [3]
3 b 13Πu [7]
4 A 11Σg+ 310
.792 88(36)[2] 9 353
.179 5 (28)[2] 118[2] [2]
5 c 13Σg+ 306
.543 6(16)[3] 7 093
.492 6(86)[3] 104[3]
6 B 11Πu 293
.617 142(310)[6] 2 984
.444[6] 118[6]
7 E 3(?)1Σg+ [8]

See also

edit

References

edit
  1. ^ Chemical Bonding, Mark J. Winter, Oxford University Press, 1994, ISBN 0-19-855694-2
  • ^ a b c d e f g h i j k Le Roy, Robert J.; N. S. Dattani; J. A. Coxon; A. J. Ross; Patrick Crozet; C. Linton (25 November 2009). "Accurate analytic potentials for Li2(X) and Li2(A) from 2 to 90 Angstroms, and the radiative lifetime of Li(2p)". Journal of Chemical Physics. 131 (20): 204309. Bibcode:2009JChPh.131t4309L. doi:10.1063/1.3264688. PMID 19947682.
  • ^ a b c d e f g h i Dattani, N. S.; R. J. Le Roy (8 May 2013). "A DPF data analysis yields accurate analytic potentials for Li2(a)and Li2(c) that incorporate 3-state mixing near the c-state asymptote". Journal of Molecular Spectroscopy. 268 (1–2): 199–210. arXiv:1101.1361. Bibcode:2011JMoSp.268..199.. doi:10.1016/j.jms.2011.03.030. S2CID 119266866.
  • ^ a b W. Gunton, M. Semczuk, N. S. Dattani, K. W. Madison, High resolution photoassociation spectroscopy of the 6Li2 A-state, https://arxiv.org/abs/1309.5870
  • ^ a b Semczuk, M.; Li, X.; Gunton, W.; Haw, M.; Dattani, N. S.; Witz, J.; Mills, A. K.; Jones, D. J.; Madison, K. W. (2013). "High-resolution photoassociation spectroscopy of the 6Li2 c-state". Phys. Rev. A. 87 (5): 052505. arXiv:1309.6662. Bibcode:2013PhRvA..87e2505S. doi:10.1103/PhysRevA.87.052505. S2CID 119263860.
  • ^ a b c d e Huang, Yiye; R. J. Le Roy (8 October 2003). "Potential energy Lambda double and Born-Oppenheimer breakdown functions for the B1Piu "barrier" state of Li2". Journal of Chemical Physics. 119 (14): 7398–7416. Bibcode:2003JChPh.119.7398H. doi:10.1063/1.1607313.
  • ^ a b c Li, Dan; F. Xie; L. Li; A. Lazoudis; A. M. Lyyra (29 September 2007). "New observation of the, 13Δg, and 23Πg states and molecular constants with all 6Li2, 7Li2, and 6Li7Li data". Journal of Molecular Spectroscopy. 246 (2): 180–186. Bibcode:2007JMoSp.246..180L. doi:10.1016/j.jms.2007.09.008.
  • ^ a b Jastrzebski, W; A. Pashov; P. Kowalczyk (22 June 2001). "The E-state of lithium dimer revised". Journal of Chemical Physics. 114 (24): 10725–10727. Bibcode:2001JChPh.11410725J. doi:10.1063/1.1374927.
  • ^ Pashov, A; W. Jastzebski; P. Kowalczyk (22 October 2000). "The Li2 F "shelf" state: Accurate potential energy curve based on the inverted perturbation approach". Journal of Chemical Physics. 113 (16): 6624–6628. Bibcode:2000JChPh.113.6624P. doi:10.1063/1.1311297.
  • ^ Tang, Li-Yan; Yan, Zong-Chao; Shi, Ting-Yun; Mitroy, J. (2011). "Third-order perturbation theory for van der Waals interaction coefficients" (PDF). Physical Review A. 84 (5): 052502. Bibcode:2011PhRvA..84e2502T. doi:10.1103/PhysRevA.84.052502. ISSN 1050-2947. S2CID 122544942. Archived from the original (PDF) on 2020-06-25.
  • Further reading

    edit

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Dilithium&oldid=1231747987"
     



    Last edited on 30 June 2024, at 01:41  





    Languages

     


    العربية
    تۆرکجه
    Bosanski
    Deutsch
    Esperanto
    فارسی
    Français

    Bahasa Indonesia
    Italiano
    Nederlands

    Русский
    Српски / srpski
    Srpskohrvatski / српскохрватски

     

    Wikipedia


    This page was last edited on 30 June 2024, at 01:41 (UTC).

    Content is available under CC BY-SA 4.0 unless otherwise noted.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Terms of Use

    Desktop