Home  

Random  

Nearby  



Log in  



Settings  



Donate  



About Wikipedia  

Disclaimers  



Wikipedia





Dynamic pressure





Article  

Talk  



Language  

Watch  

Edit  





Influid dynamics, dynamic pressure (denoted by qorQ and sometimes called velocity pressure) is the quantity defined by:[1]

where (inSI units):

It can be thought of as the fluid's kinetic energy per unit volume.

For incompressible flow, the dynamic pressure of a fluid is the difference between its total pressure and static pressure. From Bernoulli's law, dynamic pressure is given by

where p0 and ps are the total and static pressures, respectively.

Physical meaning

edit

Dynamic pressure is the kinetic energy per unit volume of a fluid. Dynamic pressure is one of the terms of Bernoulli's equation, which can be derived from the conservation of energy for a fluid in motion.[1]

At a stagnation point the dynamic pressure is equal to the difference between the stagnation pressure and the static pressure, so the dynamic pressure in a flow field can be measured at a stagnation point.[1]

Another important aspect of dynamic pressure is that, as dimensional analysis shows, the aerodynamic stress (i.e. stress within a structure subject to aerodynamic forces) experienced by an aircraft travelling at speed   is proportional to the air density and square of  , i.e. proportional to  . Therefore, by looking at the variation of   during flight, it is possible to determine how the stress will vary and in particular when it will reach its maximum value. The point of maximum aerodynamic load is often referred to as max q and it is a critical parameter in many applications, such as launch vehicles.

Dynamic pressure can also appear as a term in the incompressible Navier-Stokes equation which may be written:

 

By a vector calculus identity ( )

 

so that for incompressible, irrotational flow ( ), the second term on the left in the Navier-Stokes equation is just the gradient of the dynamic pressure. In hydraulics, the term   is known as the hydraulic velocity head (hv) so that the dynamic pressure is equal to  .

Uses

edit
 
A flow of air through a venturi meter, showing the columns connected in a U-shape (amanometer) and partially filled with water. The meter is "read" as a differential pressure head in cm or inches of water and is equivalent to the difference in velocity head.

The dynamic pressure, along with the static pressure and the pressure due to elevation, is used in Bernoulli's principle as an energy balance on a closed system. The three terms are used to define the state of a closed system of an incompressible, constant-density fluid.

When the dynamic pressure is divided by the product of fluid density and acceleration due to gravity, g, the result is called velocity head, which is used in head equations like the one used for pressure head and hydraulic head. In a venturi flow meter, the differential pressure head can be used to calculate the differential velocity head, which are equivalent in the adjacent picture. An alternative to velocity headisdynamic head.

Compressible flow

edit

Many authors define dynamic pressure only for incompressible flows. (For compressible flows, these authors use the concept of impact pressure.) However, the definition of dynamic pressure can be extended to include compressible flows.[2][3]


For compressible flow the isentropic relations can be used (also valid for incompressible flow):

 


Where:

  Mach number (non-dimensional),
  ratio of specific heats (non-dimensional; 1.4 for air at sea-level conditions),

See also

edit

References

edit

Notes

edit
  1. ^ a b c Clancy, L.J., Aerodynamics, Section 3.5
  • ^ Clancy, L.J., Aerodynamics, Section 3.12 and 3.13
  • ^ "the dynamic pressure is equal to half rho vee squared only in incompressible flow."
    Houghton, E.L. and Carpenter, P.W. (1993), Aerodynamics for Engineering Students, Section 2.3.1
  • edit

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Dynamic_pressure&oldid=1226911663"
     



    Last edited on 2 June 2024, at 14:51  





    Languages

     


    العربية
    Bosanski
    Català
    Deutsch
    Español
    فارسی
    Français

    Italiano
    עברית
    Latviešu
    Bahasa Melayu
    Nederlands

    Norsk bokmål
    Norsk nynorsk
    Polski
    Simple English
    Suomi
    ி
    Українська

     

    Wikipedia


    This page was last edited on 2 June 2024, at 14:51 (UTC).

    Content is available under CC BY-SA 4.0 unless otherwise noted.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Terms of Use

    Desktop