Home  

Random  

Nearby  



Log in  



Settings  



Donate  



About Wikipedia  

Disclaimers  



Wikipedia





Equatorial coordinate system





Article  

Talk  



Language  

Watch  

Edit  





The equatorial coordinate system is a celestial coordinate system widely used to specify the positions of celestial objects. It may be implemented in sphericalorrectangular coordinates, both defined by an origin at the centre of Earth, a fundamental plane consisting of the projection of Earth's equator onto the celestial sphere (forming the celestial equator), a primary direction towards the March equinox, and a right-handed convention.[1][2]

Model of the equatorial coordinate system. Declination (vertical arcs, degrees) and hour angle (horizontal arcs, hours) is shown. For hour angle, right ascension (horizontal arcs, degrees) can be used as an alternative.

The origin at the centre of Earth means the coordinates are geocentric, that is, as seen from the centre of Earth as if it were transparent.[3] The fundamental plane and the primary direction mean that the coordinate system, while aligned with Earth's equator and pole, does not rotate with the Earth, but remains relatively fixed against the background stars. A right-handed convention means that coordinates increase northward from and eastward around the fundamental plane.

Primary direction

edit

This description of the orientation of the reference frame is somewhat simplified; the orientation is not quite fixed. A slow motion of Earth's axis, precession, causes a slow, continuous turning of the coordinate system westward about the poles of the ecliptic, completing one circuit in about 26,000 years. Superimposed on this is a smaller motion of the ecliptic, and a small oscillation of the Earth's axis, nutation.[4]

In order to fix the exact primary direction, these motions necessitate the specification of the equinox of a particular date, known as an epoch, when giving a position. The three most commonly used are:

Mean equinox of a standard epoch (usually J2000.0, but may include B1950.0, B1900.0, etc.)
is a fixed standard direction, allowing positions established at various dates to be compared directly.
Mean equinox of date
is the intersection of the ecliptic of "date" (that is, the ecliptic in its position at "date") with the mean equator (that is, the equator rotated by precession to its position at "date", but free from the small periodic oscillations of nutation). Commonly used in planetary orbit calculation.
True equinox of date
is the intersection of the ecliptic of "date" with the true equator (that is, the mean equator plus nutation). This is the actual intersection of the two planes at any particular moment, with all motions accounted for.

A position in the equatorial coordinate system is thus typically specified true equinox and equator of date, mean equinox and equator of J2000.0, or similar. Note that there is no "mean ecliptic", as the ecliptic is not subject to small periodic oscillations.[5]

Spherical coordinates

edit

Use in astronomy

edit

Astar's spherical coordinates are often expressed as a pair, right ascension and declination, without a distance coordinate. The direction of sufficiently distant objects is the same for all observers, and it is convenient to specify this direction with the same coordinates for all. In contrast, in the horizontal coordinate system, a star's position differs from observer to observer based on their positions on the Earth's surface, and is continuously changing with the Earth's rotation.

Telescopes equipped with equatorial mounts and setting circles employ the equatorial coordinate system to find objects. Setting circles in conjunction with a star chartorephemeris allow the telescope to be easily pointed at known objects on the celestial sphere.

Declination

edit

The declination symbol δ, (lower case "delta", abbreviated DEC) measures the angular distance of an object perpendicular to the celestial equator, positive to the north, negative to the south. For example, the north celestial pole has a declination of +90°. The origin for declination is the celestial equator, which is the projection of the Earth's equator onto the celestial sphere. Declination is analogous to terrestrial latitude.[6][7][8]

Right ascension

edit
 
As seen from above the Earth's north pole, a star's   local hour angle (LHA) for an   observer near New York. Also depicted are the star's   right ascension and   Greenwich hour angle (GHA), the   local mean sidereal time (LMST) and   Greenwich mean sidereal time (GMST). The symbol ʏ identifies the March equinox direction.

The right ascension symbol α, (lower case "alpha", abbreviated RA) measures the angular distance of an object eastward along the celestial equator from the March equinox to the hour circle passing through the object. The March equinox point is one of the two points where the ecliptic intersects the celestial equator. Right ascension is usually measured in sidereal hours, minutes and seconds instead of degrees, a result of the method of measuring right ascensions by timing the passage of objects across the meridian as the Earth rotates. There are 360°/24h = 15° in one hour of right ascension, and 24h of right ascension around the entire celestial equator.[6][9][10]

When used together, right ascension and declination are usually abbreviated RA/Dec.

Hour angle

edit

Alternatively to right ascension, hour angle (abbreviated HA or LHA, local hour angle), a left-handed system, measures the angular distance of an object westward along the celestial equator from the observer's meridian to the hour circle passing through the object. Unlike right ascension, hour angle is always increasing with the rotation of Earth. Hour angle may be considered a means of measuring the time since upper culmination, the moment when an object contacts the meridian overhead.

A culminating star on the observer's meridian is said to have a zero hour angle (0h). One sidereal hour (approximately 0.9973 solar hours) later, Earth's rotation will carry the star to the west of the meridian, and its hour angle will be 1h. When calculating topocentric phenomena, right ascension may be converted into hour angle as an intermediate step.[11][12][13]

Rectangular coordinates

edit

Geocentric equatorial coordinates

edit
 
Geocentric equatorial coordinates. The origin is the centre of the Earth. The fundamental plane is the plane of the Earth's equator. The primary direction (the x axis) is the March equinox. A right-handed convention specifies a y axis 90° to the east in the fundamental plane; the z axis is the north polar axis. The reference frame does not rotate with the Earth, rather, the Earth rotates around the z axis.

There are a number of rectangular variants of equatorial coordinates. All have:

The reference frames do not rotate with the Earth (in contrast to Earth-centred, Earth-fixed frames), remaining always directed toward the equinox, and drifting over time with the motions of precession and nutation.

Summary of notation for astronomical equatorial coordinates[16]
  Spherical Rectangular
Right ascension Declination Distance General Special-purpose
Geocentric α δ Δ ξ, η, ζ X, Y, Z (Sun)
Heliocentric       x, y, z

Heliocentric equatorial coordinates

edit

Inastronomy, there is also a heliocentric rectangular variant of equatorial coordinates, designated x, y, z, which has:

This frame is in every way equivalent to the ξ, η, ζ frame, above, except that the origin is removed to the centre of the Sun. It is commonly used in planetary orbit calculation. The three astronomical rectangular coordinate systems are related by[17]  

See also

edit

References

edit
  1. ^ Nautical Almanac Office, U.S. Naval Observatory; H.M. Nautical Almanac Office; Royal Greenwich Observatory (1961). Explanatory Supplement to the Astronomical Ephemeris and the American Ephemeris and Nautical Almanac. H.M. Stationery Office, London (reprint 1974). pp. 24, 26.
  • ^ Vallado, David A. (2001). Fundamentals of Astrodynamics and Applications. Microcosm Press, El Segundo, CA. p. 157. ISBN 1-881883-12-4.
  • ^ U.S. Naval Observatory Nautical Almanac Office; U.K. Hydrographic Office; H.M. Nautical Almanac Office (2008). The Astronomical Almanac for the Year 2010. U.S. Govt. Printing Office. p. M2, "apparent place". ISBN 978-0-7077-4082-9.
  • ^ Explanatory Supplement (1961), pp. 20, 28
  • ^ Meeus, Jean (1991). Astronomical Algorithms. Willmann-Bell, Inc., Richmond, VA. p. 137. ISBN 0-943396-35-2.
  • ^ a b Peter Duffett-Smith (1988). Practical Astronomy with Your Calculator, third edition. Cambridge University Press. pp. 28–29. ISBN 0-521-35699-7.
  • ^ Meir H. Degani (1976). Astronomy Made Simple. Doubleday & Company, Inc. p. 216. ISBN 0-385-08854-X.
  • ^ Astronomical Almanac 2010, p. M4
  • ^ Moulton, Forest Ray (1918). An Introduction to Astronomy. p. 127.
  • ^ Astronomical Almanac 2010, p. M14
  • ^ Peter Duffett-Smith (1988). Practical Astronomy with Your Calculator, third edition. Cambridge University Press. pp. 34–36. ISBN 0-521-35699-7.
  • ^ Astronomical Almanac 2010, p. M8
  • ^ Vallado (2001), p. 154
  • ^ Explanatory Supplement (1961), pp. 24–26
  • ^ Vallado (2001), pp. 157, 158
  • ^ Explanatory Supplement (1961), sec. 1G
  • ^ Explanatory Supplement (1961), pp. 20, 27
  • edit
  •   Stars
  •   Spaceflight
  •   Outer space
  •   Solar System

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Equatorial_coordinate_system&oldid=1228085432"
     



    Last edited on 9 June 2024, at 11:21  





    Languages

     


    العربية
    Asturianu
    Беларуская
    Български
    Català
    Čeština
    Deutsch
    Eesti
    Español
    Esperanto
    Euskara
    فارسی
    Français

    ि
    Hrvatski
    Igbo
    Bahasa Indonesia
    Íslenska
    Italiano
    עברית
    Lëtzebuergesch
    Lietuvių
    Magyar
    Македонски
    Bahasa Melayu

    Norsk bokmål
    Norsk nynorsk
    Oʻzbekcha / ўзбекча
    Polski
    Português
    Română
    Русский
    Slovenčina
    Slovenščina
    Српски / srpski
    Srpskohrvatski / српскохрватски
    Suomi
    Svenska
    Tagalog


    Українська
    اردو
    Tiếng Vit


     

    Wikipedia


    This page was last edited on 9 June 2024, at 11:21 (UTC).

    Content is available under CC BY-SA 4.0 unless otherwise noted.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Terms of Use

    Desktop