Home  

Random  

Nearby  



Log in  



Settings  



Donate  



About Wikipedia  

Disclaimers  



Wikipedia





EtherChannel





Article  

Talk  



Language  

Watch  

Edit  





EtherChannel is a port link aggregation technology or port-channel architecture used primarily on Cisco switches. It allows grouping of several physical Ethernet links to create one logical Ethernet link for the purpose of providing fault-tolerance and high-speed links between switches, routers and servers. An EtherChannel can be created from between two and eight active Fast, Gigabit or 10-Gigabit Ethernet ports, with an additional one to eight inactive (failover) ports which become active as the other active ports fail. EtherChannel is primarily used in the backbone network, but can also be used to connect end user machines.

EtherChannel between a switch and a server

EtherChannel technology was invented by Kalpana in the early 1990s.[1] Kalpana was acquired by Cisco Systems in 1994. In 2000, the IEEE passed 802.3ad, which is an open standard version of EtherChannel.[2]

Benefits

edit

Using an EtherChannel has numerous advantages, and probably the most desirable aspect is the bandwidth. Using the maximum of 8 active ports a total bandwidth of 800 Mbit/s, 8 Gbit/s or 80 Gbit/s is possible depending on port speed. This assumes there is a traffic mixture, as those speeds do not apply to a single application only. It can be used with Ethernet running on twisted pair wiring, single-mode and multimode fiber.

Because EtherChannel takes advantage of existing wiring it makes it very scalable. It can be used at all levels of the network to create higher bandwidth links as the traffic needs of the network increase. All Cisco switches have the ability to support EtherChannel.

When an EtherChannel is configured all adapters that are part of the channel share the same Layer 2 (MAC) address. This makes the EtherChannel transparent to network applications and users because they only see the one logical connection; they have no knowledge of the individual links.

EtherChannel aggregates the traffic across all the available active ports in the channel. The port is selected using a Cisco-proprietary hash algorithm, based on source or destination MAC addresses, IP addressesorTCP and UDP port numbers. The hash function gives a number between 0 and 7, and the following table shows how the 8 numbers are distributed among the 2 to 8 physical ports. In the hypothesis of real random hash algorithm, 2, 4 or 8 ports configurations lead to fair load-balancing, whereas other configurations lead to unfair load-balancing.

Number of Ports

in the EtherChannel

Load Balancing

ratio between Ports

8 1:1:1:1:1:1:1:1
7 2:1:1:1:1:1:1
6 2:2:1:1:1:1
5 2:2:2:1:1
4 2:2:2:2
3 3:3:2
2 4:4

Fault-tolerance is another key aspect of EtherChannel. Should a link fail, the EtherChannel technology will automatically redistribute traffic across the remaining links. This automatic recovery takes less than one second and is transparent to network applications and the end user. This makes it very resilient and desirable for mission-critical applications.

Spanning tree protocol (STP) can be used with an EtherChannel. STP treats all the links as a single one and BPDUs are only sent down one of the links. Without the use of an EtherChannel, STP would effectively shutdown any redundant links between switches until one connection goes down. This is where an EtherChannel is most desirable, it allows use of all available links between two devices.

EtherChannels can be also configured as VLAN trunks. If any single link of an EtherChannel is configured as a VLAN trunk, the entire EtherChannel will act as a VLAN trunk. Cisco ISL, VTP and IEEE 802.1Q are compatible with EtherChannel.

Limitations

edit

A limitation of EtherChannel is that all the physical ports in the aggregation group must reside on the same switch except in the case of a switch stack, where they can reside on different switches on the stack. Avaya's SMLT protocol removes this limitation by allowing the physical ports to be split between two switches in a triangle configuration or 4 or more switches in a mesh configuration. Cisco's Virtual Switching System (VSS) allows the creation of a Multichassis Etherchannel (MEC) similar to the DMLT protocol allowing ports to be aggregated towards different physical chassis that form a single virtual switch entity. Also Extreme Networks may do this functionality via M-LAG Multilink Agreggation. Cisco Nexus series of switches allow the creation of a Virtual PortChannel (vPC) between a remote device and two individual Nexus switches. The two Cisco Nexus switches involved in a vPC differ from stacking or VSS technology in that stacking and VSS create a single data and control plane across the multiple switches, whereas vPC creates a single data plane across the two Nexus switches while keeping the two control planes separate.

Components

edit

EtherChannel is made up of the following key elements:

EtherChannel vs. 802.3ad

edit

EtherChannel and IEEE 802.3ad standards are very similar and accomplish the same goal. There are a few differences between the two, other than the fact that EtherChannel is Cisco proprietary and 802.3ad is an open standard, listed below:

Both technologies are capable of automatically configuring this logical link. EtherChannel supports both LACP and Cisco's PAgP, whereas 802.3ad uses LACP.

LACP allows for up to 8 active and 8 standby links, whereas PAgP only allows for 8 active links.

See also

edit

References

edit
  1. ^ "Kalpana Claims A Simple Method For Tackling Ethernet Bottlenecks". Computer Business Review. 1994-03-04. Retrieved 2024-05-24.
  • ^ "IEEE 802.3ad Link Aggregation Task Force". www.ieee802.org. Archived from the original on 27 October 2017. Retrieved 9 May 2018.
  • ^ Understanding EtherChannel Load Balancing and Redundancy on Catalyst switches — Cisco Systems

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=EtherChannel&oldid=1225448199"
     



    Last edited on 24 May 2024, at 14:24  





    Languages

     


    Deutsch
    Español
    فارسی
    Français
    Polski
    Română
    Русский
    Українська
     

    Wikipedia


    This page was last edited on 24 May 2024, at 14:24 (UTC).

    Content is available under CC BY-SA 4.0 unless otherwise noted.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Terms of Use

    Desktop