Home  

Random  

Nearby  



Log in  



Settings  



Donate  



About Wikipedia  

Disclaimers  



Wikipedia





Exponential growth





Article  

Talk  



Language  

Watch  

Edit  





Exponential growth is a process that increases quantity over time at an ever-increasing rate. It occurs when the instantaneous rate of change (that is, the derivative) of a quantity with respect to time is proportional to the quantity itself. Described as a function, a quantity undergoing exponential growth is an exponential function of time, that is, the variable representing time is the exponent (in contrast to other types of growth, such as quadratic growth). Exponential growth is the inverseoflogarithmic growth.

The graph illustrates how exponential growth (green) surpasses both linear (red) and cubic (blue) growth.
  Linear growth
  Exponential growth

If the constant of proportionality is negative, then the quantity decreases over time, and is said to be undergoing exponential decay instead. In the case of a discrete domain of definition with equal intervals, it is also called geometric growthorgeometric decay since the function values form a geometric progression.

The formula for exponential growth of a variable x at the growth rate r, as time t goes on in discrete intervals (that is, at integer times 0, 1, 2, 3, ...), is

where x0 is the value of x at time 0. The growth of a bacterial colony is often used to illustrate it. One bacterium splits itself into two, each of which splits itself resulting in four, then eight, 16, 32, and so on. The amount of increase keeps increasing because it is proportional to the ever-increasing number of bacteria. Growth like this is observed in real-life activity or phenomena, such as the spread of virus infection, the growth of debt due to compound interest, and the spread of viral videos. In real cases, initial exponential growth often does not last forever, instead slowing down eventually due to upper limits caused by external factors and turning into logistic growth.

Terms like "exponential growth" are sometimes incorrectly interpreted as "rapid growth". Indeed, something that grows exponentially can in fact be growing slowly at first.[1][2]

Examples

edit
 
Bacteria exhibit exponential growth under optimal conditions.

Biology

edit

Physics

edit

Economics

edit

Finance

edit

Computer science

edit

Internet phenomena

edit

Basic formula

edit
 
exponential growth:
 
 
exponential growth:
 

A quantity x depends exponentially on time tif  where the constant a is the initial value of x,   the constant b is a positive growth factor, and τ is the time constant—the time required for x to increase by one factor of b:  

Ifτ > 0 and b >1, then x has exponential growth. If τ < 0 and b >1, or τ > 0 and 0 < b <1, then x has exponential decay.

Example: If a species of bacteria doubles every ten minutes, starting out with only one bacterium, how many bacteria would be present after one hour? The question implies a = 1, b = 2 and τ = 10 min.

   

After one hour, or six ten-minute intervals, there would be sixty-four bacteria.

Many pairs (b, τ) of a dimensionless non-negative number b and an amount of time τ (aphysical quantity which can be expressed as the product of a number of units and a unit of time) represent the same growth rate, with τ proportional to log b. For any fixed b not equal to 1 (e.g. e or 2), the growth rate is given by the non-zero time τ. For any non-zero time τ the growth rate is given by the dimensionless positive number b.

Thus the law of exponential growth can be written in different but mathematically equivalent forms, by using a different base. The most common forms are the following:   where x0 expresses the initial quantity x(0).

Parameters (negative in the case of exponential decay):

The quantities k, τ, and T, and for a given p also r, have a one-to-one connection given by the following equation (which can be derived by taking the natural logarithm of the above):   where k = 0 corresponds to r = 0 and to τ and T being infinite.

Ifp is the unit of time the quotient t/p is simply the number of units of time. Using the notation t for the (dimensionless) number of units of time rather than the time itself, t/p can be replaced by t, but for uniformity this has been avoided here. In this case the division by p in the last formula is not a numerical division either, but converts a dimensionless number to the correct quantity including unit.

A popular approximated method for calculating the doubling time from the growth rate is the rule of 70, that is,  .

Graphs comparing doubling times and half lives of exponential growths (bold lines) and decay (faint lines), and their 70/t and 72/t approximations. In the SVG version, hover over a graph to highlight it and its complement.

Reformulation as log-linear growth

edit

If a variable x exhibits exponential growth according to  , then the log (to any base) of x grows linearly over time, as can be seen by taking logarithms of both sides of the exponential growth equation:  

This allows an exponentially growing variable to be modeled with a log-linear model. For example, if one wishes to empirically estimate the growth rate from intertemporal data on x, one can linearly regress log xont.

Differential equation

edit

The exponential function   satisfies the linear differential equation:   saying that the change per instant of time of x at time t is proportional to the value of x(t), and x(t) has the initial value  .

The differential equation is solved by direct integration:   so that  

In the above differential equation, if k < 0, then the quantity experiences exponential decay.

For a nonlinear variation of this growth model see logistic function.

Other growth rates

edit

In the long run, exponential growth of any kind will overtake linear growth of any kind (that is the basis of the Malthusian catastrophe) as well as any polynomial growth, that is, for all α:  

There is a whole hierarchy of conceivable growth rates that are slower than exponential and faster than linear (in the long run). See Degree of a polynomial § Computed from the function values.

Growth rates may also be faster than exponential. In the most extreme case, when growth increases without bound in finite time, it is called hyperbolic growth. In between exponential and hyperbolic growth lie more classes of growth behavior, like the hyperoperations beginning at tetration, and  , the diagonal of the Ackermann function.

Logistic growth

edit
 
The J-shaped exponential growth (left, blue) and the S-shaped logistic growth (right, red).

In reality, initial exponential growth is often not sustained forever. After some period, it will be slowed by external or environmental factors. For example, population growth may reach an upper limit due to resource limitations.[9] In 1845, the Belgian mathematician Pierre François Verhulst first proposed a mathematical model of growth like this, called the "logistic growth".[10]

Limitations of models

edit

Exponential growth models of physical phenomena only apply within limited regions, as unbounded growth is not physically realistic. Although growth may initially be exponential, the modelled phenomena will eventually enter a region in which previously ignored negative feedback factors become significant (leading to a logistic growth model) or other underlying assumptions of the exponential growth model, such as continuity or instantaneous feedback, break down.

Exponential growth bias

edit

Studies show that human beings have difficulty understanding exponential growth. Exponential growth bias is the tendency to underestimate compound growth processes. This bias can have financial implications as well.[11]

Below are some stories that emphasize this bias.

Rice on a chessboard

edit

According to an old legend, vizier Sissa Ben Dahir presented an Indian King Sharim with a beautiful handmade chessboard. The king asked what he would like in return for his gift and the courtier surprised the king by asking for one grain of rice on the first square, two grains on the second, four grains on the third, etc. The king readily agreed and asked for the rice to be brought. All went well at first, but the requirement for 2n−1 grains on the nth square demanded over a million grains on the 21st square, more than a million million (a.k.a. trillion) on the 41st and there simply was not enough rice in the whole world for the final squares. (From Swirski, 2006)[12]

The second half of the chessboard is the time when an exponentially growing influence is having a significant economic impact on an organization's overall business strategy.

Water lily

edit

French children are offered a riddle, which appears to be an aspect of exponential growth: "the apparent suddenness with which an exponentially growing quantity approaches a fixed limit". The riddle imagines a water lily plant growing in a pond. The plant doubles in size every day and, if left alone, it would smother the pond in 30 days killing all the other living things in the water. Day after day, the plant's growth is small, so it is decided that it won't be a concern until it covers half of the pond. Which day will that be? The 29th day, leaving only one day to save the pond.[13][12]

See also

edit
  • Albert Allen Bartlett
  • Arthrobacter
  • Asymptotic notation
  • Bacterial growth
  • Bounded growth
  • Cell growth
  • Combinatorial explosion
  • Exponential algorithm
  • EXPSPACE
  • EXPTIME
  • Hausdorff dimension
  • Hyperbolic growth
  • Information explosion
  • Law of accelerating returns
  • List of exponential topics
  • Logarithmic growth
  • Logistic function
  • Malthusian growth model
  • Power law
  • Menger sponge
  • Moore's law
  • Quadratic growth
  • Stein's law
  • References

    edit
    1. ^ Suri, Manil (4 March 2019). "Opinion | Stop Saying 'Exponential.' Sincerely, a Math Nerd". The New York Times.
  • ^ "10 Scientific Words You're Probably Using Wrong". HowStuffWorks. 11 July 2014.
  • ^ Slavov, Nikolai; Budnik, Bogdan A.; Schwab, David; Airoldi, Edoardo M.; van Oudenaarden, Alexander (2014). "Constant Growth Rate Can Be Supported by Decreasing Energy Flux and Increasing Aerobic Glycolysis". Cell Reports. 7 (3): 705–714. doi:10.1016/j.celrep.2014.03.057. ISSN 2211-1247. PMC 4049626. PMID 24767987.
  • ^ Sublette, Carey. "Introduction to Nuclear Weapon Physics and Design". Nuclear Weapons Archive. Retrieved 26 May 2009.
  • ^ Crauder, Evans & Noell 2008, pp. 314–315.
  • ^ a b Ariel Cintrón-Arias (2014). "To Go Viral". arXiv:1402.3499 [physics.soc-ph].
  • ^ Karine Nahon; Jeff Hemsley (2013). Going Viral. Polity. p. 16. ISBN 978-0-7456-7129-1.
  • ^ YouTube (2012). "Gangnam Style vs Call Me Maybe: A Popularity Comparison". YouTube Trends.
  • ^ Crauder, Bruce; Evans, Benny; Noell, Alan (2008). Functions and Change: A Modeling Approach to College Algebra. Houghton Mifflin Harcourt. p. 398. ISBN 978-1-111-78502-4.
  • ^ Bernstein, Ruth (2003). Population Ecology: An Introduction to Computer Simulations. John Wiley & Sons. p. 37. ISBN 978-0-470-85148-7.
  • ^ Stango, Victor; Zinman, Jonathan (2009). "Exponential Growth Bias and Household Finance". The Journal of Finance. 64 (6): 2807–2849. doi:10.1111/j.1540-6261.2009.01518.x.
  • ^ a b Porritt, Jonathan (2005). Capitalism: as if the world matters. London: Earthscan. p. 49. ISBN 1-84407-192-8.
  • ^ Meadows, Donella (2004). The Limits to Growth: The 30-Year Update. Chelsea Green Publishing. p. 21. ISBN 9781603581554.
  • Sources

    edit
    edit

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Exponential_growth&oldid=1224217642"
     



    Last edited on 16 May 2024, at 23:51  





    Languages

     


    العربية
    Azərbaycanca
    Català
    Чӑвашла
    Čeština
    Dansk
    Deutsch
    Eesti
    Ελληνικά
    Español
    Euskara
    فارسی
    Français

    ि
    Bahasa Indonesia
    Interlingua
    Íslenska
    Italiano
    עברית
    Kreyòl ayisyen
    Magyar

    Bahasa Melayu
    Nederlands

    Nordfriisk
    Norsk bokmål
    Norsk nynorsk
    Polski
    Português
    Русский
    Slovenščina
    Suomi
    Türkçe
    Українська
    Tiếng Vit

     

    Wikipedia


    This page was last edited on 16 May 2024, at 23:51 (UTC).

    Content is available under CC BY-SA 4.0 unless otherwise noted.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Terms of Use

    Desktop