Home  

Random  

Nearby  



Log in  



Settings  



Donate  



About Wikipedia  

Disclaimers  



Wikipedia





Focal conics





Article  

Talk  



Language  

Watch  

Edit  





Ingeometry, focal conics are a pair of curves consisting of[1][2] either

Definition of focal conics
A,C: vertices of the ellipse and foci of the hyperbola
E,F: foci of the ellipse and vertices of the hyperbola
Focal conics: two parabolas
A: vertex of the red parabola and focus of the blue parabola
F: focus of the red parabola and vertex of the blue parabola

or

Focal conics play an essential role answering the question: "Which right circular cones contain a given ellipse or hyperbola or parabola (see below)".

Focal conics are used as directrices for generating Dupin cyclidesascanal surfaces in two ways.[3][4]

Focal conics can be seen as degenerate focal surfaces: Dupin cyclides are the only surfaces, where focal surfaces collapse to a pair of curves, namely focal conics.[5]

InPhysical chemistry focal conics are used for describing geometrical properties of liquid crystals.[6]

One should not mix focal conics with confocal conics. The latter ones have all the same foci.

Equations and parametric representations

edit

Ellipse and hyperbola

edit
Equations

If one describes the ellipse in the x-y-plane in the common way by the equation

 

then the corresponding focal hyperbola in the x-z-plane has equation

 

where   is the linear eccentricity of the ellipse with  

Parametric representations
ellipse:   and
hyperbola:  

Two parabolas

edit

Two parabolas in the x-y-plane and in the x-z-plane:

1. parabola:   and
2. parabola:  

with   the semi-latus rectum of both the parabolas.

 
Right circular cone (green) through an ellipse (blue)

Right circular cones through an ellipse

edit
 
Right circular cones through an ellipse
Proof

Given: Ellipse with vertices   and foci   and a right circular cone with apex   containing the ellipse (see diagram).

Because of symmetry the axis of the cone has to be contained in the plane through the foci, which is orthogonal to the ellipse's plane. There exists a Dandelin sphere  , which touches the ellipse's plane at the focus   and the cone at a circle. From the diagram and the fact that all tangential distances of a point to a sphere are equal one gets:

 
 

Hence:

 const.

and the set of all possible apices lie on the hyperbola with the vertices   and the foci  .

Analogously one proves the cases, where the cones contain a hyperbola or a parabola.[7]

References

edit
  1. ^ Müller- Kruppa, S. 104
  • ^ Glaeser-Stachel-Odehnal, p. 137
  • ^ Felix Klein: Vorlesungen Über Höhere Geometrie, Herausgeber: W. Blaschke, Richard Courant, Springer-Verlag, 2013, ISBN 3642498485, S. 58.
  • ^ Glaeser-Stachel-Odehnal: p. 147
  • ^ D. Hilbert, S. Cohn-Vossen:Geometry and the Imagination, Chelsea Publishing Company, 1952, p. 218.
  • ^ Thomas Andrew Waigh: The Physics of Living Processes, Verlag John Wiley & Sons, 2014, ISBN 1118698274, p. 128.
  • ^ Glaeser-Stachel-Odehnal p. 139

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Focal_conics&oldid=1203401128"
     



    Last edited on 4 February 2024, at 20:23  





    Languages

     


    Deutsch
    Français
     

    Wikipedia


    This page was last edited on 4 February 2024, at 20:23 (UTC).

    Content is available under CC BY-SA 4.0 unless otherwise noted.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Terms of Use

    Desktop