Home  

Random  

Nearby  



Log in  



Settings  



Donate  



About Wikipedia  

Disclaimers  



Wikipedia





Fragmentation (reproduction)





Article  

Talk  



Language  

Watch  

Edit  





Fragmentation in multicellular or colonial organisms is a form of asexual reproduction or cloning, where an organism is split into fragments upon maturation and the spilted part becomes the new individual.

The organism may develop specific organs or zones to shed or be easily broken off. If the splitting occurs without the prior preparation of the organism, both fragments must be able to regenerate the complete organism for it to function as reproduction.

Fragmentation as a method of reproduction is seen in organisms such as spirogyra, filamentous cyanobacteria, molds, lichens, sponges, acoel flatworms, some annelid worms and sea stars.

Fragmentation in various organisms

edit

Molds, yeasts and mushrooms, all of which are part of the Fungi kingdom, produce tiny filaments called hyphae. These hyphae obtain food and nutrients from the body of other organisms to grow and fertilize. Then a piece of hyphae breaks off and grows into a new individual and the cycle continues.

Many lichens produce specialized structures that can easily break away and disperse. These structures contain both hyphae of the mycobiont and the algae (phycobiont) (see soredia and isidia). Larger fragments of the thallus may break away when the lichen dries or due to mechanical disturbances (see the section on reproduction in lichens).

Plants

edit

Fragmentation is a very common type of vegetative reproductioninplants. Many trees, shrubs, nonwoody perennials, and ferns form clonal colonies by producing new rooted shoots by rhizomesorstolons, which increases the diameter of the colony. If a rooted shoot becomes detached from the colony, then fragmentation has occurred. There are several other mechanisms of natural fragmentation in plants.

People use fragmentation to artificially propagate many plants via division, layering, cuttings, grafting, micropropagation and storage organs, such as bulbs, corms, tubers and rhizomes.

Animals

edit

Sponges and coral colonies naturally fragment and reproduce. Many species of annelids and flatworms produce by this method. When the splitting occurs due to specific developmental changes, the terms orchiectomy, laparotomy, and budding are used. In 'architomy' the animal splits at a particular point and the two fragments regenerate the missing organs and tissues. The splitting is not preceded by the development of the tissues to be lost. Before splitting, the animal may develop furrows at the zone of splitting. The headless fragment must regenerate a completely new head. In 'paratomy', the split occurs perpendicular to the antero-posterior axis and the split is preceded by the "pregeneration" of the anterior structures in the posterior portion. The two organisms have their body axis aligned i.e. they develop in a head to tail fashion. Budding is similar to paratomy except that the body axes need not be aligned: the new head may grow toward the side or even point backward (e.g. Convolutriloba retrogemmaanacoel flat worm).[4][5]

Coral

edit
 
Corals can be multiplied in aquaria by attaching "frags" from a mother colony to a suitable substrate, such as a ceramic plug or a piece of live rock. This aquarium is designed specifically for growing coral colonies from frags.

Many types of coral colonies can increase in number by fragmentation occurring naturally[6] or artificially. Reef aquarium enthusiasts fragment corals for various purposes including shape control; sharing with others; regrowth experiments; and minimizing damage to natural coral reefs. Both hard and soft corals can be fragmented. Genera highly tolerant of fragmentation include Acropora, Montipora, Pocillopora, Euphyllia, and Caulastraea among others.[7] Most sea anemones reproduce through fragmentation via a variety of methods including longitudinal fission, where the original anemone splits across the middle forming two equal-sized anemones, and basal laceration, in which small parts of the animal split from the base to form new anemones.[8]

Echinoderms

edit

Inechinoderms, the process is usually known as fissiparity (a term also used infrequently for biological fission in general). Some species can intentionally reproduce in this manner through autotomy. This method is more common during the larval editing stages.[9]

Disadvantage of this process of reproduction

edit

As this process is a form of asexual reproduction, it does not produce genetic diversity in the offspring. Therefore, these are more vulnerable to changing environments, parasites, and diseases.

See also

edit

References

edit
  1. ^ Rood, S.B., Kalischuk, M.L., and Braatne, J.H. 2003. Branch propagation, not cladoptosis, permits dispersive, clonal reproduction of riparian cottonwoods. Forest Ecology and Management 186: 227–242. [1] Archived 2007-09-28 at the Wayback Machine
  • ^ "Moss asexual reproduction". Archived from the original on 2006-09-27. Retrieved 2006-08-06.
  • ^ Equihua, Clementina (1987). "Diseminación de yemas en Marchantia polymorpha L. (Hepaticae)". Cryptogamie, Bryologie, Lichénologie (in Spanish). 8 (3): 199–217.
  • ^ Åkesson, Bertil; Robert Gschwentner; Jan Hendelberg; Peter Ladurner; Johann Müller; Reinhard Rieger (2001-12-01). "Fission in Convolutriloba longifissura: asexual reproduction in acoelous turbellarians revisited" (PDF). Acta Zoologica. 82 (3): 231–239. doi:10.1046/j.1463-6395.2001.00084.x. ISSN 1463-6395. Archived from the original (PDF) on 2016-03-04. Retrieved 2011-07-13.
  • ^ Egger, Bernhard (December 2008). "Regeneration: rewarding, but potentially risky" (PDF). Birth Defects Research Part C: Embryo Today: Reviews. 84 (4): 257–264. doi:10.1002/bdrc.20135. ISSN 1542-9768. PMID 19067421. Archived from the original (PDF) on 2011-08-11. Retrieved 2011-07-13.
  • ^ Lirman, Diego (2000-08-23). "Fragmentation in the branching coral Acropora palmata (Lamarck): growth, survivorship, and reproduction of colonies and fragments" (PDF). Journal of Experimental Marine Biology and Ecology. 251 (1): 41–57. doi:10.1016/s0022-0981(00)00205-7. ISSN 0022-0981. PMID 10958900. Retrieved 2011-07-13.
  • ^ Calfo, Anthony (2008). "Coral fragmentation: Not just for beginners". Reefkeeping Magazine. Reef Central. Retrieved 2015-05-03.
  • ^ "Fact Sheet: Sea Anemones". Marine Biological Association. Archived from the original on 24 December 2019. Retrieved 3 September 2018.
  • ^ Helen Nilsson Sköld; Matthias Obst; Mattias Sköld; Bertil Åkesson (2009). "Stem Cells in Asexual Reproduction of Marine Invertebrates". In Baruch Rinkevich; Valeria Matranga (eds.). Stem Cells in Marine Organisms. Springer. p. 125. ISBN 978-90-481-2766-5.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Fragmentation_(reproduction)&oldid=1222677682"
     



    Last edited on 7 May 2024, at 09:00  





    Languages

     


    العربية
    Aragonés
    Azərbaycanca
    Български
    Català
    Čeština
    Español
    Galego
    Bahasa Indonesia
    Italiano
    Kurdî
    Nederlands
    Português
    Русский
    Simple English
    Українська

     

    Wikipedia


    This page was last edited on 7 May 2024, at 09:00 (UTC).

    Content is available under CC BY-SA 4.0 unless otherwise noted.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Terms of Use

    Desktop