Home  

Random  

Nearby  



Log in  



Settings  



Donate  



About Wikipedia  

Disclaimers  



Wikipedia





Granular synthesis





Article  

Talk  



Language  

Watch  

Edit  





Granular synthesis is a sound synthesis method that operates on the microsound time scale.

It is based on the same principle as sampling. However, the samples are split into small pieces of around 1 to 100 ms in duration. These small pieces are called grains. Multiple grains may be layered on top of each other, and may play at different speeds, phases, volume, and frequency, among other parameters.

At low speeds of playback, the result is a kind of soundscape, often described as a cloud, that is manipulatable in a manner unlike that for natural sound sampling or other synthesis techniques. At high speeds, the result is heard as a note or notes of a novel timbre. By varying the waveform, envelope, duration, spatial position, and density of the grains, many different sounds can be produced.

Both have been used for musical purposes: as sound effects, raw material for further processing by other synthesis or digital signal processing effects, or as complete musical works in their own right. Conventional effects that can be achieved include amplitude modulation and time stretching. More experimentally, stereo or multichannel scattering, random reordering, disintegration and morphing are possible.

History

edit

Greek composer Iannis Xenakis is known as the inventor of the granular synthesis technique.[1][page needed]

The composer Iannis Xenakis (1960) was the first to explicate a compositional theory for grains of sound. He began by adopting the following lemma: "All sound, even continuous musical variation, is conceived as an assemblage of a large number of elementary sounds adequately disposed in time. In the attack, body, and decline of a complex sound, thousands of pure sounds appear in a more or less short interval of time  ." Xenakis created granular sounds using analog tone generators and tape splicing. These appear in the composition Analogique A-B for string orchestra and tape (1959).[2]

Curtis Roads was the first to implement granular synthesis on a computer in 1974. [3]

Twelve years later, in 1986, the Canadian composer Barry Truax implemented real-time versions of this synthesis technique using the DMX-1000 Signal Processing Computer.[4] "Granular synthesis was implemented in different ways by Truax."[2]

Microsound

edit

This includes all sounds on the time scale shorter than musical notes, the sound object time scale, and longer than the sample time scale. Specifically, this is shorter than one tenth of a second and longer than 10 milliseconds, which includes part of the audio frequency range (20 Hz to 20 kHz) as well as part of the infrasonic frequency range (below 20 Hz, rhythm).[5]

These sounds include transient audio phenomena and are known in acoustics and signal processing by various names including sound particles, quantum acoustics, sonal atom, grain, glisson, grainlet, trainlet, microarc, wavelet, chirplet, fof, time-frequency atom, pulsar, impulse, toneburst, tone pip, acoustic pixel, and others. In the frequency domain they may be named kernel, logon, and frame, among others.[5]

Physicist Dennis Gabor was an important pioneer in microsound.[5] Micromontage is musical montage with microsound.

Microtime is the level of "sonic" or aural "syntax" or the "time-varying distribution of...spectral energy".[6]

edit
edit

See also

edit

References

edit
  1. ^ Xenakis, Iannis (1971) Formalized Music: Thought and Mathematics in Composition. Bloomington and London: Indiana University Press.
  • ^ a b Roads, Curtis (1996). The Computer Music Tutorial. Cambridge: The MIT Press. p. 169. ISBN 0-262-18158-4.
  • ^ Roads, Curtis (2001). Microsound. Cambridge, Massachusetts: MIT Press. ISBN 0-262-18158-4.
  • ^ Truax, Barry (1988). "Real-Time Granular Synthesis with a Digital Signal Processor". Computer Music Journal. 12 (2): 14–26. doi:10.2307/3679938. JSTOR 3679938.
  • ^ a b c Roads, Curtis (2001). Microsound, p. vii and 20-28. Cambridge: MIT Press. ISBN 0-262-18215-7.
  • ^ Horacio Vaggione, "Articulating Microtime", Computer Music Journal, Vol. 20, No. 2. (Summer, 1996), pp. 33–38.[page needed]
  • ^ "Software".
  • ^ "Understanding Clouds and Its Derivatives". After Later Audio. 21 August 2021. Retrieved 2022-11-09.
  • ^ "Morphagene". Signal Flux. 6 July 2019. Retrieved 2022-11-09.
  • ^ "Make Noise Co. | Morphagene". www.makenoisemusic.com. Retrieved 2022-11-09.
  • ^ "Tasty Chips GR-1". Sound on Sound.
  • Bibliography

    edit

    Articles

    edit

    Books

    edit

    Discography

    edit
    edit

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Granular_synthesis&oldid=1208997180"
     



    Last edited on 19 February 2024, at 21:05  





    Languages

     


    Català
    Deutsch
    Español
    Français
    Italiano
    Nederlands
    Polski
    Português
    Русский
    Українська
     

    Wikipedia


    This page was last edited on 19 February 2024, at 21:05 (UTC).

    Content is available under CC BY-SA 4.0 unless otherwise noted.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Terms of Use

    Desktop