Home  

Random  

Nearby  



Log in  



Settings  



Donate  



About Wikipedia  

Disclaimers  



Wikipedia





Inborn errors of metabolism





Article  

Talk  



Language  

Watch  

Edit  





Inborn errors of metabolism form a large class of genetic diseases involving congenital disorders of enzyme activities.[1] The majority are due to defects of single genes that code for enzymes that facilitate conversion of various substances (substrates) into others (products). In most of the disorders, problems arise due to accumulation of substances which are toxic or interfere with normal function, or due to the effects of reduced ability to synthesize essential compounds. Inborn errors of metabolism are often referred to as congenital metabolic diseasesorinherited metabolic disorders.[2] Another term used to describe these disorders is "enzymopathies". This term was created following the study of biodynamic enzymology, a science based on the study of the enzymes and their products. Finally, inborn errors of metabolism were studied for the first time by British physician Archibald Garrod (1857–1936), in 1908. He is known for work that prefigured the "one gene–one enzyme" hypothesis, based on his studies on the nature and inheritance of alkaptonuria. His seminal text, Inborn Errors of Metabolism, was published in 1923.[3]

Classification of metabolic diseases

edit

Traditionally the inherited metabolic diseases were classified as disorders of carbohydrate metabolism, amino acid metabolism, organic acid metabolism, or lysosomal storage diseases.[4] In recent decades, hundreds of new inherited disorders of metabolism have been discovered and the categories have proliferated. Following are some of the major classes of congenital metabolic diseases, with prominent examples of each class.[5]

  • G6PD deficiency
  • Disorders of amino acid metabolism
  • Urea Cycle Disorder or Urea Cycle Defects
  • Disorders of organic acid metabolism (organic acidurias)
  • Disorders of fatty acid oxidation and mitochondrial metabolism
  • Disorders of porphyrin metabolism
  • Disorders of purine or pyrimidine metabolism
  • Disorders of steroid metabolism
  • Disorders of mitochondrial function
  • Disorders of peroxisomal function
  • Lysosomal storage disorders
  • Signs and symptoms

    edit

    Because of the enormous number of these diseases the wide range of systems affected badly, nearly every "presenting complaint" to a healthcare provider may have a congenital metabolic disease as a possible cause, especially in childhood and adolescence. The following are examples of potential manifestations affecting each of the major organ systems.

  • Ambiguous genitalia, delayed puberty, precocious puberty
  • Developmental delay, seizures, dementia, encephalopathy, stroke
  • Deafness, blindness, pain agnosia
  • Skin rash, abnormal pigmentation, lacking of pigmentation, excessive hair growth, lumps and bumps
  • Dental abnormalities
  • Immunodeficiency, low platelet count, low red blood cell count, enlarged spleen, enlarged lymph nodes
  • Many forms of cancer
  • Recurrent vomiting, diarrhea, abdominal pain
  • Excessive urination, kidney failure, dehydration, edema
  • Low blood pressure, heart failure, enlarged heart, hypertension, myocardial infarction
  • Liver enlargement, jaundice, liver failure
  • Unusual facial features, congenital malformations
  • Excessive breathing (hyperventilation), respiratory failure
  • Abnormal behavior, depression, psychosis
  • Joint pain, muscle weakness, cramps
  • Hypothyroidism, adrenal insufficiency, hypogonadism, diabetes mellitus
  • Diagnostic

    edit

    Dozens of congenital metabolic diseases are now detectable by newborn screening tests, especially expanded testing using mass spectrometry.[6] Gas chromatography–mass spectrometry-based technology with an integrated analytics system has now made it possible to test a newborn for over 100 mm genetic metabolic disorders. Because of the multiplicity of conditions, many different diagnostic tests are used for screening. An abnormal result is often followed by a subsequent "definitive test" to confirm the suspected diagnosis.

     
    Gas chromatography–mass spectrometry (GCMS) machine

    Common screening tests used in the last sixty years:

    Specific diagnostic tests (or focused screening for a small set of disorders):

    A 2015 review reported that even with all these diagnostic tests, there are cases when "biochemical testing, gene sequencing, and enzymatic testing can neither confirm nor rule out an IEM, resulting in the need to rely on the patient's clinical course".[7] A 2021 review showed that several neurometabolic disorders converge on common neurochemical mechanisms that interfere with biological mechanisms also considered central in ADHD pathophysiology and treatment. This highlights the importance of close collaboration between health services to avoid clinical overshadowing.[8]

    Treatment

    edit

    In the middle of the 20th century the principal treatment for some of the amino acid disorders was restriction of dietary protein and all other care was simply management of complications. In the past twenty years, new medications, enzyme replacement, gene therapy, and organ transplantation have become available and beneficial for many previously untreatable disorders. Some of the more common or promising therapies are listed:

  • Dietary supplementation or replacement
  • Medications
  • Vitamins
  • Intermediary metabolites, compounds, or drugs that facilitate or retard specific metabolic pathways
  • Dialysis
  • Enzyme replacement E.g. Acid-alpha glucosidase for Pompe disease
  • Gene therapy
  • Bone marrowororgan transplantation
  • Treatment of symptoms and complications
  • Prenatal diagnosis
  • Epidemiology

    edit

    In a study in British Columbia, the overall incidence of the inborn errors of metabolism were estimated to be 40 per 100,000 live births or 1 in 2,500 births,[9] overall representing more than approximately 15% of single gene disorders in the population.[9] While a Mexican study established an overall incidence of 3.4:1,000 live newborns and a carrier detection of 6.8:1,000 NBS.[10]

    Type of inborn error Incidence
    Disease involving amino acids (e.g. PKU, Tyrosinemia), organic acids,
    primary lactic acidosis, galactosemia, or a urea cycle disease
    24 per 100,000 births[9] 1 in 4,200[9]
    Lysosomal storage disease 8 per 100,000 births[9] 1 in 12,500[9]
    Peroxisomal disorder ~3 to 4 per 100,000 of births[9] ~1 in 30,000[9]
    Respiratory chain-based mitochondrial disease ~3 per 100,000 births[9] 1 in 33,000[9]
    Glycogen storage disease 2.3 per 100,000 births[9] 1 in 43,000[9]

    References

    edit
  • ^ "Inherited metabolic disorders - Symptoms and causes". Mayo Clinic.
  • ^ Garrod, Archibald E (1923). Inborn errors of metabolism. OCLC 1159473729.[page needed][non-primary source needed]
  • ^ Bartolozzi, Giorgio (2008). "Errori congeniti del metabolismo" [Inborn errors of metabolism] (PDF). Pediatria: principi e Pratica clinica [Pediatrics: Principles and Clinical Practice] (in Italian). Elsevier srl. pp. 361–386. ISBN 978-88-214-3204-0. OCLC 884592549.
  • ^ Sghirlanzoni, Angelo (2010). Terapia delle malattie neurologiche. doi:10.1007/978-88-470-1120-5. ISBN 978-88-470-1119-9.
  • ^ Geerdink, R.B; Niessen, W.M.A; Brinkman, U.A.Th (March 2001). "Mass spectrometric confirmation criterion for product-ion spectra generated in flow-injection analysis". Journal of Chromatography A. 910 (2): 291–300. doi:10.1016/s0021-9673(00)01221-8. PMID 11261724.
  • ^ Vernon, Hilary J. (1 August 2015). "Inborn Errors of Metabolism: Advances in Diagnosis and Therapy". JAMA Pediatrics. 169 (8): 778–782. doi:10.1001/jamapediatrics.2015.0754. PMID 26075348.
  • ^ Cannon Homaei S, Barone H, Kleppe R, Betari N, Reif A, Haavik J (2021). "ADHD symptoms in neurometabolic diseases: Underlying mechanisms and clinical implications". Neuroscience and Biobehavioral Reviews. 132: 838–856. doi:10.1016/j.neubiorev.2021.11.012. PMID 34774900. S2CID 243983688.
  • ^ a b c d e f g h i j k l Applegarth, Derek A.; Toone, Jennifer R.; Lowry, R. Brian (1 January 2000). "Incidence of Inborn Errors of Metabolism in British Columbia, 1969–1996". Pediatrics. 105 (1): e10. doi:10.1542/peds.105.1.e10. PMID 10617747. S2CID 30266513.
  • ^ Navarrete-Martínez, Juana Inés; Limón-Rojas, Ana Elena; Gaytán-García, Maria de Jesús; Reyna-Figueroa, Jesús; Wakida-Kusunoki, Guillermo; Delgado-Calvillo, Ma. del Rocío; Cantú-Reyna, Consuelo; Cruz-Camino, Héctor; Cervantes-Barragán, David Eduardo (May 2017). "Newborn screening for six lysosomal storage disorders in a cohort of Mexican patients: Three-year findings from a screening program in a closed Mexican health system". Molecular Genetics and Metabolism. 121 (1): 16–21. doi:10.1016/j.ymgme.2017.03.001. PMID 28302345.
  • Further reading

    edit
    edit

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Inborn_errors_of_metabolism&oldid=1234420474"
     



    Last edited on 14 July 2024, at 07:36  





    Languages

     


    العربية
    Bosanski
    Čeština
    Deutsch
    Español
    Esperanto
    Euskara
    فارسی
    Français
    Gaeilge

    ि
    Italiano
    Lietuvių
    Bahasa Melayu
    Nederlands

    Polski
    Português
    Русский
    Српски / srpski

    Türkçe
    Tiếng Vit

     

    Wikipedia


    This page was last edited on 14 July 2024, at 07:36 (UTC).

    Content is available under CC BY-SA 4.0 unless otherwise noted.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Terms of Use

    Desktop