Home  

Random  

Nearby  



Log in  



Settings  



Donate  



About Wikipedia  

Disclaimers  



Wikipedia





Isotopes of tantalum





Article  

Talk  



Language  

Watch  

Edit  





Natural tantalum (73Ta) consists of two stable isotopes: 181Ta (99.988%) and 180m
Ta
(0.012%).

Isotopesoftantalum (73Ta)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
177Ta synth 56.56 h β+ 177Hf
178Ta synth 2.36 h β+ 178Hf
179Ta synth 1.82 y ε 179Hf
180Ta synth 8.125 h ε 180Hf
β 180W
180mTa 0.0120% stable
181Ta 99.988% stable
182Ta synth 114.43 d β 182W
183Ta synth 5.1 d β 183W
Standard atomic weight Ar°(Ta)
  • 180.94788±0.00002[2]
  • 180.95±0.01 (abridged)[3]
  • talk
  • edit
  • There are also 35 known artificial radioisotopes, the longest-lived of which are 179Ta with a half-life of 1.82 years, 182Ta with a half-life of 114.43 days, 183Ta with a half-life of 5.1 days, and 177Ta with a half-life of 56.56 hours. All other isotopes have half-lives under a day, most under an hour. There are also numerous isomers, the most stable of which (other than 180mTa) is 178m1Ta with a half-life of 2.36 hours. All isotopes and nuclear isomers of tantalum are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed.

    Tantalum has been proposed as a "salting" material for nuclear weapons (cobalt is another, better-known salting material). A jacket of 181Ta, irradiated by the intense high-energy neutron flux from an exploding thermonuclear weapon, would transmute into the radioactive isotope 182
    Ta
    with a half-life of 114.43 days and produce approximately 1.12 MeVofgamma radiation, significantly increasing the radioactivity of the weapon's fallout for several months. Such a weapon is not known to have ever been built, tested, or used.[4] While the conversion factor from absorbed dose (measured in Grays) to effective dose (measured in Sievert) for gamma rays is 1 while it is 50 for alpha radiation (i.e., a gamma dose of 1 Gray is equivalent to 1 Sievert whereas an alpha dose of 1 Gray is equivalent to 50 Sievert), gamma rays are only attenuated by shielding, not stopped. As such, alpha particles require incorporation to have an effect while gamma rays can have an effect via mere proximity. In military terms, this allows a gamma ray weapon to deny an area to either side as long as the dose is high enough, whereas radioactive contamination by alpha emitters which do not release significant amounts of gamma rays can be counteracted by ensuring the material is not incorporated.

    List of isotopes

    edit
    Nuclide
    [n 1]
    Z N Isotopic mass (Da)
    [n 2][n 3]
    Half-life
    [n 4]
    Decay
    mode

    [n 5]
    Daughter
    isotope

    [n 6][n 7]
    Spin and
    parity
    [n 8][n 4]
    Natural abundance (mole fraction)
    Excitation energy[n 4] Normal proportion Range of variation
    155
    Ta
    73 82 154.97459(54)# 2.9+1.5
    −1.1
     ms
    [5]
    p 154Hf (11/2−)
    155m
    Ta
    ~323 keV 12+4
    −3
     μs
    [6]
    p 154Hf 11/2−?
    156
    Ta
    [7]
    73 83 155.97230(43)# 106(4) ms p (71%) 155Hf (2−)
    β+ (29%) 156Hf
    156m
    Ta
    102(7) keV 0.36(4) s p 155Hf 9+
    157
    Ta
    73 84 156.96819(22) 10.1(4) ms α (91%) 153Lu 1/2+
    β+ (9%) 157Hf
    157m1
    Ta
    22(5) keV 4.3(1) ms 11/2−
    157m2
    Ta
    1593(9) keV 1.7(1) ms α 153Lu (25/2−)
    158
    Ta
    73 85 157.96670(22)# 49(8) ms α (96%) 154Lu (2−)
    β+ (4%) 158Hf
    158m
    Ta
    141(9) keV 36.0(8) ms α (93%) 154Lu (9+)
    IT 158Ta
    β+ 158Hf
    159
    Ta
    73 86 158.963018(22) 1.04(9) s β+ (66%) 159Hf (1/2+)
    α (34%) 155Lu
    159m
    Ta
    64(5) keV 514(9) ms α (56%) 155Lu (11/2−)
    β+ (44%) 159Hf
    160
    Ta
    73 87 159.96149(10) 1.70(20) s α 156Lu (2#)−
    β+ 160Hf
    160m
    Ta
    310(90)# keV 1.55(4) s β+ (66%) 160Hf (9)+
    α (34%) 156Lu
    161
    Ta
    73 88 160.95842(6)# 3# s β+ (95%) 161Hf 1/2+#
    α (5%) 157Lu
    161m
    Ta
    50(50)# keV 2.89(12) s 11/2−#
    162
    Ta
    73 89 161.95729(6) 3.57(12) s β+ (99.92%) 162Hf 3+#
    α (.073%) 158Lu
    163
    Ta
    73 90 162.95433(4) 10.6(18) s β+ (99.8%) 163Hf 1/2+#
    α (.2%) 159Lu
    164
    Ta
    73 91 163.95353(3) 14.2(3) s β+ 164Hf (3+)
    165
    Ta
    73 92 164.950773(19) 31.0(15) s β+ 165Hf 5/2−#
    165m
    Ta
    60(30) keV 9/2−#
    166
    Ta
    73 93 165.95051(3) 34.4(5) s β+ 166Hf (2)+
    167
    Ta
    73 94 166.94809(3) 1.33(7) min β+ 167Hf (3/2+)
    168
    Ta
    73 95 167.94805(3) 2.0(1) min β+ 168Hf (2−,3+)
    169
    Ta
    73 96 168.94601(3) 4.9(4) min β+ 169Hf (5/2+)
    170
    Ta
    73 97 169.94618(3) 6.76(6) min β+ 170Hf (3)(+#)
    171
    Ta
    73 98 170.94448(3) 23.3(3) min β+ 171Hf (5/2−)
    172
    Ta
    73 99 171.94490(3) 36.8(3) min β+ 172Hf (3+)
    173
    Ta
    73 100 172.94375(3) 3.14(13) h β+ 173Hf 5/2−
    174
    Ta
    73 101 173.94445(3) 1.14(8) h β+ 174Hf 3+
    175
    Ta
    73 102 174.94374(3) 10.5(2) h β+ 175Hf 7/2+
    176
    Ta
    73 103 175.94486(3) 8.09(5) h β+ 176Hf (1)−
    176m1
    Ta
    103.0(10) keV 1.1(1) ms IT 176Ta (+)
    176m2
    Ta
    1372.6(11)+X keV 3.8(4) μs (14−)
    176m3
    Ta
    2820(50) keV 0.97(7) ms (20−)
    177
    Ta
    73 104 176.944472(4) 56.56(6) h β+ 177Hf 7/2+
    177m1
    Ta
    73.36(15) keV 410(7) ns 9/2−
    177m2
    Ta
    186.15(6) keV 3.62(10) μs 5/2−
    177m3
    Ta
    1355.01(19) keV 5.31(25) μs 21/2−
    177m4
    Ta
    4656.3(5) keV 133(4) μs 49/2−
    178
    Ta
    73 105 177.945778(16) 9.31(3) min β+ 178Hf 1+
    178m1
    Ta
    100(50)# keV 2.36(8) h β+ 178Hf (7)−
    178m2
    Ta
    1570(50)# keV 59(3) ms (15−)
    178m3
    Ta
    3000(50)# keV 290(12) ms (21−)
    179
    Ta
    73 106 178.9459295(23) 1.82(3) y EC 179Hf 7/2+
    179m1
    Ta
    30.7(1) keV 1.42(8) μs (9/2)−
    179m2
    Ta
    520.23(18) keV 335(45) ns (1/2)+
    179m3
    Ta
    1252.61(23) keV 322(16) ns (21/2−)
    179m4
    Ta
    1317.3(4) keV 9.0(2) ms IT 179Ta (25/2+)
    179m5
    Ta
    1327.9(4) keV 1.6(4) μs (23/2−)
    179m6
    Ta
    2639.3(5) keV 54.1(17) ms (37/2+)
    180
    Ta
    73 107 179.9474648(24) 8.152(6) h EC (86%) 180Hf 1+
    β (14%) 180W
    180m1
    Ta
    77.1(8) keV Observationally stable[n 9][n 10] 9− 1.2(2)×10−4
    180m2
    Ta
    1452.40(18) keV 31.2(14) μs 15−
    180m3
    Ta
    3679.0(11) keV 2.0(5) μs (22−)
    180m4
    Ta
    4171.0+X keV 17(5) μs (23, 24, 25)
    181
    Ta
    73 108 180.9479958(20) Observationally stable[n 11] 7/2+ 0.99988(2)
    181m1
    Ta
    6.238(20) keV 6.05(12) μs 9/2−
    181m2
    Ta
    615.21(3) keV 18(1) μs 1/2+
    181m3
    Ta
    1485(3) keV 25(2) μs 21/2−
    181m4
    Ta
    2230(3) keV 210(20) μs 29/2−
    182
    Ta
    73 109 181.9501518(19) 114.43(3) d β 182W 3−
    182m1
    Ta
    16.263(3) keV 283(3) ms IT 182Ta 5+
    182m2
    Ta
    519.572(18) keV 15.84(10) min 10−
    183
    Ta
    73 110 182.9513726(19) 5.1(1) d β 183W 7/2+
    183m
    Ta
    73.174(12) keV 107(11) ns 9/2−
    184
    Ta
    73 111 183.954008(28) 8.7(1) h β 184W (5−)
    185
    Ta
    73 112 184.955559(15) 49.4(15) min β 185W (7/2+)#
    185m
    Ta
    1308(29) keV >1 ms (21/2−)
    186
    Ta
    73 113 185.95855(6) 10.5(3) min β 186W (2−,3−)
    186m
    Ta
    1.54(5) min
    187
    Ta
    73 114 186.96053(21)# 2# min
    [>300 ns]
    β 187W 7/2+#
    188
    Ta
    73 115 187.96370(21)# 20# s
    [>300 ns]
    β 188W
    189
    Ta
    73 116 188.96583(32)# 3# s
    [>300 ns]
    7/2+#
    190
    Ta
    73 117 189.96923(43)# 0.3# s
    This table header & footer:
    1. ^ mTa – Excited nuclear isomer.
  • ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  • ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  • ^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  • ^ Modes of decay:
    EC: Electron capture
    IT: Isomeric transition


    p: Proton emission
  • ^ Bold italics symbol as daughter – Daughter product is nearly stable.
  • ^ Bold symbol as daughter – Daughter product is stable.
  • ^ ( ) spin value – Indicates spin with weak assignment arguments.
  • ^ Only known observationally stable nuclear isomer, believed to decay by isomeric transition to 180Ta, β decay to 180W, or electron capture to 180Hf with a half-life over 2.9×1017 years;[8] also theorized to undergo α decay to 176Lu
  • ^ One of the few (observationally) stable odd-odd nuclei
  • ^ Believed to undergo α decay to 177Lu
  • Tantalum-180m

    edit

    The nuclide 180m
    Ta
    (m denotes a metastable state) is one of a very few nuclear isomers which are more stable than their ground states. Although it is not unique in this regard (this property is shared by bismuth-210m (210mBi) and americium-242m (242mAm), among other nuclides), it is exceptional in that it is observationally stable: no decay has ever been observed. In contrast, the ground state nuclide 180
    Ta
    has a half-life of only 8 hours.

    180m
    Ta
    has sufficient energy to decay in three ways: isomeric transition to the ground stateof180
    Ta
    , beta decayto180
    W
    , or electron captureto180
    Hf
    . However, no radioactivity from any of these theoretically possible decay modes has ever been observed. As of 2023, the half-life of 180mTa is calculated from experimental observation to be at least 2.9×1017 (290 quadrillion) years.[8][9][10] The very slow decay of 180m
    Ta
    is attributed to its high spin (9 units) and the low spin of lower-lying states. Gamma or beta decay would require many units of angular momentum to be removed in a single step, so that the process would be very slow.[11]

    Because of this stability, 180m
    Ta
    is a primordial nuclide, the only naturally occurring nuclear isomer (excluding short-lived radiogenic and cosmogenic nuclides). It is also the rarest primordial nuclide in the Universe observed for any element which has any stable isotopes. In an s-process stellar environment with a thermal energy kBT = 26 keV (i.e. a temperature of 300 million kelvin), the nuclear isomers are expected to be fully thermalized, meaning that 180Ta rapidly transitions between spin states and its overall half-life is predicted to be 11 hours.[12]

    It is one of only five stable nuclides to have both an odd number of protons and an odd number of neutrons, the other four stable odd-odd nuclides being 2H, 6Li, 10B and 14N.[13]

    References

    edit
    1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  • ^ "Standard Atomic Weights: Tantalum". CIAAW. 2005.
  • ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  • ^ D. T. Win; M. Al Masum (2003). "Weapons of Mass Destruction" (PDF). Assumption University Journal of Technology. 6 (4): 199–219.
  • ^ Page, R. D.; Bianco, L.; Darby, I. G.; Uusitalo, J.; Joss, D. T.; Grahn, T.; Herzberg, R.-D.; Pakarinen, J.; Thomson, J.; Eeckhaudt, S.; Greenlees, P. T.; Jones, P. M.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Leppänen, A.-P.; Nyman, M.; Rahkila, P.; Sarén, J.; Scholey, C.; Steer, A.; Hornillos, M. B. Gómez; Al-Khalili, J. S.; Cannon, A. J.; Stevenson, P. D.; Ertürk, S.; Gall, B.; Hadinia, B.; Venhart, M.; Simpson, J. (26 June 2007). "α decay of Re 159 and proton emission from Ta 155". Physical Review C. 75 (6): 061302. Bibcode:2007PhRvC..75f1302P. doi:10.1103/PhysRevC.75.061302. ISSN 0556-2813.
  • ^ Uusitalo, J.; Davids, C. N.; Woods, P. J.; Seweryniak, D.; Sonzogni, A. A.; Batchelder, J. C.; Bingham, C. R.; Davinson, T.; deBoer, J.; Henderson, D. J.; Maier, H. J.; Ressler, J. J.; Slinger, R.; Walters, W. B. (1 June 1999). "Proton emission from the closed neutron shell nucleus 155 Ta". Physical Review C. 59 (6): R2975–R2978. Bibcode:1999PhRvC..59.2975U. doi:10.1103/PhysRevC.59.R2975. ISSN 0556-2813. Retrieved 12 June 2023.
  • ^ Darby, I. G.; Page, R. D.; Joss, D. T.; Bianco, L.; Grahn, T.; Judson, D. S.; Simpson, J.; Eeckhaudt, S.; Greenlees, P. T.; Jones, P. M.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Leppänen, A.-P.; Nyman, M.; Rahkila, P.; Sarén, J.; Scholey, C.; Steer, A. N.; Uusitalo, J.; Venhart, M.; Ertürk, S.; Gall, B.; Hadinia, B. (20 June 2011). "Precision measurements of proton emission from the ground states of Ta 156 and Re 160". Physical Review C. 83 (6): 064320. Bibcode:2011PhRvC..83f4320D. doi:10.1103/PhysRevC.83.064320. ISSN 0556-2813. Retrieved 21 June 2023.
  • ^ a b Arnquist, I. J.; Avignone III, F. T.; Barabash, A. S.; Barton, C. J.; Bhimani, K. H.; Blalock, E.; Bos, B.; Busch, M.; Buuck, M.; Caldwell, T. S.; Christofferson, C. D.; Chu, P.-H.; Clark, M. L.; Cuesta, C.; Detwiler, J. A.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Haufe, C. R.; Henning, R.; Aguilar, D. Hervas; Hoppe, E. W.; Hostiuc, A.; Kim, I.; Kouzes, R. T.; Lannen V., T. E.; Li, A.; López-Castaño, J. M.; Massarczyk, R.; Meijer, S. J.; Meijer, W.; Oli, T. K.; Paudel, L. S.; Pettus, W.; Poon, A. W. P.; Radford, D. C.; Reine, A. L.; Rielage, K.; Rouyer, A.; Ruof, N. W.; Schaper, D. C.; Schleich, S. J.; Smith-Gandy, T. A.; Tedeschi, D.; Thompson, J. D.; Varner, R. L.; Vasilyev, S.; Watkins, S. L.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yu, C.-H. (13 October 2023). "Constraints on the Decay of 180mTa". Phys. Rev. Lett. 131 (15) 152501. arXiv:2306.01965. doi:10.1103/PhysRevLett.131.152501.
  • ^ Conover, Emily (2016-10-03). "Rarest nucleus reluctant to decay". Science News. Retrieved 2016-10-05.
  • ^ Lehnert, Björn; Hult, Mikael; Lutter, Guillaume; Zuber, Kai (2017). "Search for the decay of nature's rarest isotope 180mTa". Physical Review C. 95 (4) 044306. arXiv:1609.03725. Bibcode:2017PhRvC..95d4306L. doi:10.1103/PhysRevC.95.044306. S2CID 118497863.
  • ^ Quantum mechanics for engineers Leon van Dommelen, Florida State University
  • ^ P. Mohr; F. Kaeppeler; R. Gallino (2007). "Survival of Nature's Rarest Isotope 180Ta under Stellar Conditions". Phys. Rev. C. 75 012802. arXiv:astro-ph/0612427. doi:10.1103/PhysRevC.75.012802. S2CID 44724195.
  • ^ Lide, David R., ed. (2002). Handbook of Chemistry & Physics (88th ed.). CRC. ISBN 978-0-8493-0486-6. OCLC 179976746. Archived from the original on 24 July 2017. Retrieved 2008-05-23.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_tantalum&oldid=1225501599"
     



    Last edited on 24 May 2024, at 20:34  





    Languages

     


    Català
    Чӑвашла
    Čeština
    Español
    Esperanto
    فارسی
    Français

    Bahasa Indonesia
    Magyar
    Nederlands

    Русский


     

    Wikipedia


    This page was last edited on 24 May 2024, at 20:34 (UTC).

    Content is available under CC BY-SA 4.0 unless otherwise noted.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Terms of Use

    Desktop