Home  

Random  

Nearby  



Log in  



Settings  



Donate  



About Wikipedia  

Disclaimers  



Wikipedia





Kenorland





Article  

Talk  



Language  

Watch  

Edit  





Kenorland is a hypothetical Neoarchean supercontinent. If it existed, it would have been one of the earliest known supercontinents on Earth. It is thought to have formed during the Neoarchaean Era c. 2.72 billion years ago (2.72 Ga) by the accretion of Neoarchaean cratons and the formation of new continental crust. It comprised what later became Laurentia (the core of today's North America and Greenland), Baltica (today's Scandinavia and Baltic), Western Australia and Kalaharia.[1]

Kenorland
Map of Kenorland supercontinent 2.5 billion years ago[citation needed]
Historical continent
Formed2.72 Ga
TypeSupercontinent
Today part of
  • Baltica
  • Western Australia
  • Kalahari Craton
  • [1]

    Swarms of volcanic dikes and their paleomagnetic orientation as well as the existence of similar stratigraphic sequences permit this reconstruction. The core of Kenorland, the Baltic/Fennoscandian Shield, traces its origins back to over 3.1 Ga. The Yilgarn Craton (present-day Western Australia) contains zircon crystals in its crust that date back to 4.4 Ga.

    Kenorland was named after the Kenoran orogeny (also called the Algoman orogeny),[2] which in turn was named after the town of Kenora, Ontario.[3]

    Formation

    edit

    Kenorland was formed around 2.72 billion years ago (2.72 Ga) as a result of a series of accretion events and the formation of new continental crust.[4]

    The accretion events are recorded in the greenstone belts of the Yilgarn Craton as metamorphosed basalt belts and granitic domes accreted around the high grade metamorphic core of the Western Gneiss Terrane, which includes elements of up to 3.2 Ga in age and some older portions, for example the Narryer Gneiss Terrane.

    Breakup or disassembly

    edit

    Paleomagnetic studies show Kenorland was in generally low latitudes until tectonic magma-plume rifting began to occur between 2.48 Ga and 2.45 Ga. At 2.45 Ga the Baltic Shield was over the equator and was joined to Laurentia (the Canadian Shield) and both the Kola and Karelia cratons.[5] The protracted breakup of Kenorland during the Late Neoarchaean and early Paleoproterozoic Era 2.48 to 2.10 Gya, during the Siderian and Rhyacian periods, is manifested by mafic dikes and sedimentary rift-basins and rift-margins on many continents.[1] On early Earth, this type of bimodal deep mantle plume rifting was common in Archaean and Neoarchaean crust and continent formation.

     
    Map of Kenorland breaking up 2.3 billion years ago[citation needed]

    The geological time period surrounding the breakup of Kenorland is thought by many geologists to be the beginning of the transition point from the deep-mantle-plume method of continent formation in the Hadean to Early Archean (before the final formation of the Earth's inner core) to the subsequent two-layer core-mantle plate tectonics convection theory. However, the findings of an earlier continent, Ur, and a supercontinent of around 3.1 Gya, Vaalbara, indicate this transition period may have occurred much earlier.

    The Kola and Karelia cratons began to drift apart around 2.45 Gya, and by 2.4 Gya the Kola craton was at about 30 degrees south latitude and the Karelia craton was at about 15 degrees south latitude. Paleomagnetic evidence shows that at 2.45 Gya the Yilgarn craton (now the bulk of Western Australia) was not connected to Fennoscandia-Laurentia and was at about ~5 degrees south latitude.[citation needed]

    This implies that at 2.515 Gya an ocean existed between the Kola and Karelia cratons, and that by 2.45 Gya there was no longer a supercontinent. Also, there is speculation based on the rift margin spatial arrangements of Laurentia, that at some time during the breakup, the Slave and Superior cratons were not part of the supercontinent Kenorland, but, by then may have been two different Neoarchaean landmasses (supercratons) on opposite ends of a very large Kenorland. This is based on how drifting assemblies of various constituent pieces should flow reasonably together toward the amalgamation of the new subsequent continent. The Slave and Superior cratons now constitute the northwest and southeast portions of the Canadian Shield, respectively.

    The breakup of Kenorland was contemporary with the Huronian glaciation which persisted for up to 60 million years. The banded iron formations (BIF) show their greatest extent at this period, thus indicating a massive increase in oxygen build-up from an estimated 0.1% of the atmosphere to 1%. The rise in oxygen levels caused the virtual disappearance of the greenhouse gas methane (oxidized into carbon dioxide and water).

    The simultaneous breakup of Kenorland generally increased continental rainfall everywhere, thus increasing erosion and further reducing the other greenhouse gas, carbon dioxide. With the reduction in greenhouse gases, and with solar output being less than 85% its current power, this led to a runaway Snowball Earth scenario, where average temperatures planet-wide plummeted to below freezing. Despite the anoxia indicated by the BIF, photosynthesis continued, stabilizing climates at new levels during the second part of the Proterozoic Era.

    References

    edit
    1. ^ a b c Pesonen et al. 2003, Abstract
  • ^ Salminen, Johnna; Pehrsson, Sally; Evans, David A.D.; Wang, Chong (2021). "Neoarchean-Paleoproterozoic supercycles". In Pesonen, Lauri J.; Salminen, Johanna; Elming, Sten-Ake; Evans, David A.D.; Veikkolainen, Toni (eds.). Ancient Supercontinents and the Paleogeography of Earth. Elsevier. p. 466. ISBN 0128185341.
  • ^ Gower, Charles F.; Clifford, Paul M. (1981). "The structural geometry and geological history of Archean rocks at Kenora, north-western Ontario—a proposed type area for the Kenoran Orogeny". Canadian Journal of Earth Sciences.
  • ^ Halla 2005, Introduction, p. 22
  • ^ Mertanen 2004, p. 190
  • Bibliography

    edit
  • Aspler, L. B.; Chiarenzilli, J. R.; Cousens, B. L.; Davis, W. J.; McNicoll, V. J.; Rainbird, R. H. (1999). "Intracratonic basin processes from breakup of Kenorland to assembly of Laurentia: new geochronology and models for Hurwitz Basin, Western Churchill Province" (PDF). Contributions to the Western Churchill NATMAP Project; Canada-Nunavut Geoscience Office. Retrieved March 12, 2016.
  • Halla, J. (2005). "Neoarchean sanukitoids (2.74–2.70 Ga)" (PDF). In Halla, J.; Nironen, M.; Lauri, L. S.; Kurhila, M. I.; Käpyaho, A.; Sorjonen-Ward, P.; Äikäs, O. (eds.). Eurogranites 2005: Proterozoic and Archean Granites and Related Rocks of the Finnish Precambrian. University of Helsinki. Retrieved March 12, 2016.
  • Mertanen, Satu (2004). Paleomagnetic Evidences for the Evolution of the Earth during Early Paleoproterozoic. Symposium EV04: Interaction of Endogenic, Exogenic and Biological Terrestrial Systems (PDF).
  • Pesonen, L. J.; Elming, S.-Å.; Mertanen, S.; Pisarevsky, S.; D’Agrella-Filho, M. S.; Meert, J. G.; Schmidt, P. W.; Abrahamsen, N.; Bylund, G. (2003). "Palaeomagnetic configuration of continents during the Proterozoic". Tectonophysics. 375 (1–4): 289–324. Bibcode:2003Tectp.375..289P. doi:10.1016/s0040-1951(03)00343-3. Retrieved March 12, 2016.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Kenorland&oldid=1220497728"
     



    Last edited on 24 April 2024, at 04:07  





    Languages

     


    العربية
    Azərbaycanca
    Català
    Чӑвашла
    Deutsch
    Español
    Français
    Bahasa Indonesia
    Italiano
    Lietuvių
    Nederlands

    Norsk nynorsk
    Polski
    Português
    Română
    Русский
    Simple English
    Sunda
    Suomi
    Svenska
    Tagalog
    Türkçe
    Українська
    Tiếng Vit

     

    Wikipedia


    This page was last edited on 24 April 2024, at 04:07 (UTC).

    Content is available under CC BY-SA 4.0 unless otherwise noted.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Terms of Use

    Desktop