Home  

Random  

Nearby  



Log in  



Settings  



Donate  



About Wikipedia  

Disclaimers  



Wikipedia





Linear low-density polyethylene





Article  

Talk  



Language  

Watch  

Edit  





Linear low-density polyethylene (LLDPE) is a substantially linear polymer (polyethylene), with significant numbers of short branches, commonly made by copolymerizationofethylene with longer-chain olefins. Linear low-density polyethylene differs structurally from conventional low-density polyethylene (LDPE) because of the absence of long chain branching. The linearity of LLDPE results from the different manufacturing processes of LLDPE and LDPE. In general, LLDPE is produced at lower temperatures and pressures by copolymerization of ethylene and such higher alpha-olefinsasbutene, hexene, or octene. The copolymerization process produces an LLDPE polymer that has a narrower molecular weight distribution than conventional LDPE and in combination with the linear structure, significantly different rheological properties.[citation needed]

Linear low-density polyethylene (LLDPE) granules

Production and properties

edit

The production of LLDPE is initiated by transition metal catalysts, particularly ZieglerorPhilips types of catalyst. The actual polymerization process can be done either in solution phase or in gas phase reactors. Usually, octene is the comonomer in solution phase while butene and hexene are copolymerized with ethylene in a gas phase reactor. LLDPE has higher tensile strength and higher impact and puncture resistance than does LDPE. It is very flexible and elongates under stress. It can be used to make thinner films, with better environmental stress cracking resistance. It has good resistance to chemicals. It has good electrical properties. However, it is not as easy to process as LDPE, has lower gloss, and narrower range for heat sealing.[citation needed]

Processing

edit

LDPE and LLDPE have unique rheological or melt flow properties. LLDPE is less shear sensitive because of its narrower molecular weight distribution and shorter chain branching. During a shearing process, such as extrusion, LLDPE remains more viscous and, therefore, harder to process than an LDPE of equivalent melt index. The lower shear sensitivity of LLDPE allows for a faster stress relaxation of the polymer chains during extrusion, and, therefore, the physical properties are susceptible to changes in blow-up ratios. In melt extension, LLDPE has lower viscosity at all strain rates. This means it will not strain harden the way LDPE does when elongated. As the deformation rate of the polyethylene increases, LDPE demonstrates a dramatic rise in viscosity because of chain entanglement. This phenomenon is not observed with LLDPE because of the lack of long-chain branching in LLDPE allows the chains to slide by one another upon elongation without becoming entangled. This characteristic is important for film applications because LLDPE films can be downgauged easily while maintaining high strength and toughness. The rheological properties of LLDPE are summarized as "stiff in shear" and "soft in extension". LLDPE can be recycled, though into other things like trash can liners, lumber, landscaping ties, floor tiles, compost bins, and shipping envelopes.

Application

edit

LLDPE has penetrated almost all traditional markets for polyethylene; it is used for plastic bags and sheets (where it allows using lower thickness than comparable LDPE), plastic wrap, stretch wrap, pouches, toys, covers, lids, pipes, buckets and containers, covering of cables, geomembranes,[1] and mainly flexible tubing. In 2013, the world market for LLDPE reached a volume of $40 billion.[2]

LLDPE manufactured by using metallocene catalysts is labeled mLLDPE.

See also

edit

References

edit
  • ^ "Market Study: Polyethylene LLDPE (2nd edition)". [Ceresana].
  • edit

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Linear_low-density_polyethylene&oldid=1229077379"
     



    Last edited on 14 June 2024, at 18:47  





    Languages

     



    Español
    Français

    Italiano
    Nederlands

     

    Wikipedia


    This page was last edited on 14 June 2024, at 18:47 (UTC).

    Content is available under CC BY-SA 4.0 unless otherwise noted.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Terms of Use

    Desktop