Home  

Random  

Nearby  



Log in  



Settings  



Donate  



About Wikipedia  

Disclaimers  



Wikipedia





Linear regression





Article  

Talk  



Language  

Watch  

Edit  





Instatistics, linear regression is a statistical model which estimates the linear relationship between a scalar response and one or more explanatory variables (also known as dependent and independent variables). The case of one explanatory variable is called simple linear regression; for more than one, the process is called multiple linear regression.[1] This term is distinct from multivariate linear regression, where multiple correlated dependent variables are predicted, rather than a single scalar variable.[2] If the explanatory variables are measured with error then errors-in-variables models are required, also known as measurement error models.

In linear regression, the relationships are modeled using linear predictor functions whose unknown model parameters are estimated from the data. Such models are called linear models.[3] Most commonly, the conditional mean of the response given the values of the explanatory variables (or predictors) is assumed to be an affine function of those values; less commonly, the conditional median or some other quantile is used. Like all forms of regression analysis, linear regression focuses on the conditional probability distribution of the response given the values of the predictors, rather than on the joint probability distribution of all of these variables, which is the domain of multivariate analysis.

Linear regression was the first type of regression analysis to be studied rigorously, and to be used extensively in practical applications.[4] This is because models which depend linearly on their unknown parameters are easier to fit than models which are non-linearly related to their parameters and because the statistical properties of the resulting estimators are easier to determine.

Linear regression has many practical uses. Most applications fall into one of the following two broad categories:

Linear regression models are often fitted using the least squares approach, but they may also be fitted in other ways, such as by minimizing the "lack of fit" in some other norm (as with least absolute deviations regression), or by minimizing a penalized version of the least squares cost function as in ridge regression (L2-norm penalty) and lasso (L1-norm penalty). Use of the Mean Squared Error(MSE) as the cost on a dataset that has many large outliers, can result in a model that fits the outliers more than the true data due to the higher importance assigned by MSE to large errors. So, cost functions that are robust to outliers should be used if the dataset has many large outliers. Conversely, the least squares approach can be used to fit models that are not linear models. Thus, although the terms "least squares" and "linear model" are closely linked, they are not synonymous.

Formulation

edit
 
In linear regression, the observations (red) are assumed to be the result of random deviations (green) from an underlying relationship (blue) between a dependent variable (y) and an independent variable (x).

Given a data set  ofn statistical units, a linear regression model assumes that the relationship between the dependent variable y and the vector of regressors xislinear. This relationship is modeled through a disturbance termorerror variable ε — an unobserved random variable that adds "noise" to the linear relationship between the dependent variable and regressors. Thus the model takes the form   where T denotes the transpose, so that xiTβ is the inner product between vectors xi and β.

Often these n equations are stacked together and written in matrix notationas

 

where

 
 
 

Notation and terminology

edit

Fitting a linear model to a given data set usually requires estimating the regression coefficients   such that the error term   is minimized. For example, it is common to use the sum of squared errors   as a measure of   for minimization.

Example

edit

Consider a situation where a small ball is being tossed up in the air and then we measure its heights of ascent hi at various moments in time ti. Physics tells us that, ignoring the drag, the relationship can be modeled as

 

where β1 determines the initial velocity of the ball, β2 is proportional to the standard gravity, and εi is due to measurement errors. Linear regression can be used to estimate the values of β1 and β2 from the measured data. This model is non-linear in the time variable, but it is linear in the parameters β1 and β2; if we take regressors xi = (xi1, xi2)  = (ti, ti2), the model takes on the standard form

 

Assumptions

edit

Standard linear regression models with standard estimation techniques make a number of assumptions about the predictor variables, the response variables and their relationship. Numerous extensions have been developed that allow each of these assumptions to be relaxed (i.e. reduced to a weaker form), and in some cases eliminated entirely. Generally these extensions make the estimation procedure more complex and time-consuming, and may also require more data in order to produce an equally precise model.[citation needed]

 
Example of a cubic polynomial regression, which is a type of linear regression. Although polynomial regression fits a nonlinear model to the data, as a statistical estimation problem it is linear, in the sense that the regression function E(y | x) is linear in the unknown parameters that are estimated from the data. For this reason, polynomial regression is considered to be a special case of multiple linear regression.

The following are the major assumptions made by standard linear regression models with standard estimation techniques (e.g. ordinary least squares):

 
To check for violations of the assumptions of linearity, constant variance, and independence of errors within a linear regression model, the residuals are typically plotted against the predicted values (or each of the individual predictors). An apparently random scatter of points about the horizontal midline at 0 is ideal, but cannot rule out certain kinds of violations such as autocorrelation in the errors or their correlation with one or more covariates.

Violations of these assumptions can result in biased estimations of β, biased standard errors, untrustworthy confidence intervals and significance tests.[9] Beyond these assumptions, several other statistical properties of the data strongly influence the performance of different estimation methods:

For an example on how to test these assumptions in practical scenarios, see this comprehensive guide on Kaggle: Regression Basics with Assumption Testing.

Interpretation

edit
 
The data sets in the Anscombe's quartet are designed to have approximately the same linear regression line (as well as nearly identical means, standard deviations, and correlations) but are graphically very different. This illustrates the pitfalls of relying solely on a fitted model to understand the relationship between variables.

A fitted linear regression model can be used to identify the relationship between a single predictor variable xj and the response variable y when all the other predictor variables in the model are "held fixed". Specifically, the interpretation of βj is the expected change in y for a one-unit change in xj when the other covariates are held fixed—that is, the expected value of the partial derivativeofy with respect to xj. This is sometimes called the unique effectofxjony. In contrast, the marginal effectofxjony can be assessed using a correlation coefficientorsimple linear regression model relating only xjtoy; this effect is the total derivativeofy with respect to xj.

Care must be taken when interpreting regression results, as some of the regressors may not allow for marginal changes (such as dummy variables, or the intercept term), while others cannot be held fixed (recall the example from the introduction: it would be impossible to "hold ti fixed" and at the same time change the value of ti2).

It is possible that the unique effect can be nearly zero even when the marginal effect is large. This may imply that some other covariate captures all the information in xj, so that once that variable is in the model, there is no contribution of xj to the variation in y. Conversely, the unique effect of xj can be large while its marginal effect is nearly zero. This would happen if the other covariates explained a great deal of the variation of y, but they mainly explain variation in a way that is complementary to what is captured by xj. In this case, including the other variables in the model reduces the part of the variability of y that is unrelated to xj, thereby strengthening the apparent relationship with xj.

The meaning of the expression "held fixed" may depend on how the values of the predictor variables arise. If the experimenter directly sets the values of the predictor variables according to a study design, the comparisons of interest may literally correspond to comparisons among units whose predictor variables have been "held fixed" by the experimenter. Alternatively, the expression "held fixed" can refer to a selection that takes place in the context of data analysis. In this case, we "hold a variable fixed" by restricting our attention to the subsets of the data that happen to have a common value for the given predictor variable. This is the only interpretation of "held fixed" that can be used in an observational study.

The notion of a "unique effect" is appealing when studying a complex system where multiple interrelated components influence the response variable. In some cases, it can literally be interpreted as the causal effect of an intervention that is linked to the value of a predictor variable. However, it has been argued that in many cases multiple regression analysis fails to clarify the relationships between the predictor variables and the response variable when the predictors are correlated with each other and are not assigned following a study design.[10]

Extensions

edit

Numerous extensions of linear regression have been developed, which allow some or all of the assumptions underlying the basic model to be relaxed.

Simple and multiple linear regression

edit
 
Example of simple linear regression, which has one independent variable

The very simplest case of a single scalar predictor variable x and a single scalar response variable y is known as simple linear regression. The extension to multiple and/or vector-valued predictor variables (denoted with a capital X) is known as multiple linear regression, also known as multivariable linear regression (not to be confused with multivariate linear regression[11]).

Multiple linear regression is a generalization of simple linear regression to the case of more than one independent variable, and a special case of general linear models, restricted to one dependent variable. The basic model for multiple linear regression is

 

for each observation  .

In the formula above we consider n observations of one dependent variable and p independent variables. Thus, Yi is the ith observation of the dependent variable, Xijisith observation of the jth independent variable, j = 1, 2, ..., p. The values βj represent parameters to be estimated, and εi is the ith independent identically distributed normal error.

In the more general multivariate linear regression, there is one equation of the above form for each of m > 1 dependent variables that share the same set of explanatory variables and hence are estimated simultaneously with each other:

 

for all observations indexed as i = 1, ... , n and for all dependent variables indexed as j = 1, ... , m.

Nearly all real-world regression models involve multiple predictors, and basic descriptions of linear regression are often phrased in terms of the multiple regression model. Note, however, that in these cases the response variable y is still a scalar. Another term, multivariate linear regression, refers to cases where y is a vector, i.e., the same as general linear regression.

General linear models

edit

The general linear model considers the situation when the response variable is not a scalar (for each observation) but a vector, yi. Conditional linearity of   is still assumed, with a matrix B replacing the vector β of the classical linear regression model. Multivariate analogues of ordinary least squares (OLS) and generalized least squares (GLS) have been developed. "General linear models" are also called "multivariate linear models". These are not the same as multivariable linear models (also called "multiple linear models").

Heteroscedastic models

edit

Various models have been created that allow for heteroscedasticity, i.e. the errors for different response variables may have different variances. For example, weighted least squares is a method for estimating linear regression models when the response variables may have different error variances, possibly with correlated errors. (See also Weighted linear least squares, and Generalized least squares.) Heteroscedasticity-consistent standard errors is an improved method for use with uncorrelated but potentially heteroscedastic errors.

Generalized linear models

edit

Generalized linear models (GLMs) are a framework for modeling response variables that are bounded or discrete. This is used, for example:

Generalized linear models allow for an arbitrary link function, g, that relates the mean of the response variable(s) to the predictors:  . The link function is often related to the distribution of the response, and in particular it typically has the effect of transforming between the   range of the linear predictor and the range of the response variable.

Some common examples of GLMs are:

Single index models[clarification needed] allow some degree of nonlinearity in the relationship between x and y, while preserving the central role of the linear predictor βx as in the classical linear regression model. Under certain conditions, simply applying OLS to data from a single-index model will consistently estimate β up to a proportionality constant.[12]

Hierarchical linear models

edit

Hierarchical linear models (ormultilevel regression) organizes the data into a hierarchy of regressions, for example where A is regressed on B, and B is regressed on C. It is often used where the variables of interest have a natural hierarchical structure such as in educational statistics, where students are nested in classrooms, classrooms are nested in schools, and schools are nested in some administrative grouping, such as a school district. The response variable might be a measure of student achievement such as a test score, and different covariates would be collected at the classroom, school, and school district levels.

Errors-in-variables

edit

Errors-in-variables models (or "measurement error models") extend the traditional linear regression model to allow the predictor variables X to be observed with error. This error causes standard estimators of β to become biased. Generally, the form of bias is an attenuation, meaning that the effects are biased toward zero.

Group effects

edit

In a multiple linear regression model

 

parameter   of predictor variable   represents the individual effect of  . It has an interpretation as the expected change in the response variable   when   increases by one unit with other predictor variables held constant. When   is strongly correlated with other predictor variables, it is improbable that   can increase by one unit with other variables held constant. In this case, the interpretation of   becomes problematic as it is based on an improbable condition, and the effect of   cannot be evaluated in isolation.

For a group of predictor variables, say,  , a group effect   is defined as a linear combination of their parameters

 

where   is a weight vector satisfying  . Because of the constraint on  ,   is also referred to as a normalized group effect. A group effect   has an interpretation as the expected change in   when variables in the group   change by the amount  , respectively, at the same time with variables not in the group held constant. It generalizes the individual effect of a variable to a group of variables in that ( ) if  , then the group effect reduces to an individual effect, and ( ) if   and   for  , then the group effect also reduces to an individual effect. A group effect   is said to be meaningful if the underlying simultaneous changes of the   variables   is probable.

Group effects provide a means to study the collective impact of strongly correlated predictor variables in linear regression models. Individual effects of such variables are not well-defined as their parameters do not have good interpretations. Furthermore, when the sample size is not large, none of their parameters can be accurately estimated by the least squares regression due to the multicollinearity problem. Nevertheless, there are meaningful group effects that have good interpretations and can be accurately estimated by the least squares regression. A simple way to identify these meaningful group effects is to use an all positive correlations (APC) arrangement of the strongly correlated variables under which pairwise correlations among these variables are all positive, and standardize all   predictor variables in the model so that they all have mean zero and length one. To illustrate this, suppose that   is a group of strongly correlated variables in an APC arrangement and that they are not strongly correlated with predictor variables outside the group. Let   be the centred   and   be the standardized  . Then, the standardized linear regression model is

 

Parameters   in the original model, including  , are simple functions of   in the standardized model. The standardization of variables does not change their correlations, so   is a group of strongly correlated variables in an APC arrangement and they are not strongly correlated with other predictor variables in the standardized model. A group effect of  is

 

and its minimum-variance unbiased linear estimator is

 

where   is the least squares estimator of  . In particular, the average group effect of the   standardized variables is

 

which has an interpretation as the expected change in   when all   in the strongly correlated group increase by  th of a unit at the same time with variables outside the group held constant. With strong positive correlations and in standardized units, variables in the group are approximately equal, so they are likely to increase at the same time and in similar amount. Thus, the average group effect   is a meaningful effect. It can be accurately estimated by its minimum-variance unbiased linear estimator  , even when individually none of the   can be accurately estimated by  .

Not all group effects are meaningful or can be accurately estimated. For example,   is a special group effect with weights   and   for  , but it cannot be accurately estimated by  . It is also not a meaningful effect. In general, for a group of   strongly correlated predictor variables in an APC arrangement in the standardized model, group effects whose weight vectors   are at or near the centre of the simplex   ( ) are meaningful and can be accurately estimated by their minimum-variance unbiased linear estimators. Effects with weight vectors far away from the centre are not meaningful as such weight vectors represent simultaneous changes of the variables that violate the strong positive correlations of the standardized variables in an APC arrangement. As such, they are not probable. These effects also cannot be accurately estimated.

Applications of the group effects include (1) estimation and inference for meaningful group effects on the response variable, (2) testing for "group significance" of the   variables via testing   versus  , and (3) characterizing the region of the predictor variable space over which predictions by the least squares estimated model are accurate.

A group effect of the original variables   can be expressed as a constant times a group effect of the standardized variables  . The former is meaningful when the latter is. Thus meaningful group effects of the original variables can be found through meaningful group effects of the standardized variables.[13]

Others

edit

InDempster–Shafer theory, or a linear belief function in particular, a linear regression model may be represented as a partially swept matrix, which can be combined with similar matrices representing observations and other assumed normal distributions and state equations. The combination of swept or unswept matrices provides an alternative method for estimating linear regression models.

Estimation methods

edit

A large number of procedures have been developed for parameter estimation and inference in linear regression. These methods differ in computational simplicity of algorithms, presence of a closed-form solution, robustness with respect to heavy-tailed distributions, and theoretical assumptions needed to validate desirable statistical properties such as consistency and asymptotic efficiency.

Some of the more common estimation techniques for linear regression are summarized below.

edit
 
Francis Galton's 1886[14] illustration of the correlation between the heights of adults and their parents. The observation that adult children's heights tended to deviate less from the mean height than their parents suggested the concept of "regression toward the mean", giving regression its name. The "locus of horizontal tangential points" passing through the leftmost and rightmost points on the ellipse (which is a level curve of the bivariate normal distribution estimated from the data) is the OLS estimate of the regression of parents' heights on children's heights, while the "locus of vertical tangential points" is the OLS estimate of the regression of children's heights on parent's heights. The major axis of the ellipse is the TLS estimate.

Assuming that the independent variable is   and the model's parameters are  , then the model's prediction would be

 .

If  is extended to   then   would become a dot product of the parameter and the independent variable, i.e.

 .

In the least-squares setting, the optimum parameter is defined as such that minimizes the sum of mean squared loss:

 

Now putting the independent and dependent variables in matrices   and   respectively, the loss function can be rewritten as:

 

As the loss is convex the optimum solution lies at gradient zero. The gradient of the loss function is (using Denominator layout convention):

 

Setting the gradient to zero produces the optimum parameter:

 

Note: To prove that the   obtained is indeed the local minimum, one needs to differentiate once more to obtain the Hessian matrix and show that it is positive definite. This is provided by the Gauss–Markov theorem.

Linear least squares methods include mainly:

edit

Other estimation techniques

edit
 
Comparison of the Theil–Sen estimator (black) and simple linear regression (blue) for a set of points with outliers

Applications

edit

Linear regression is widely used in biological, behavioral and social sciences to describe possible relationships between variables. It ranks as one of the most important tools used in these disciplines.

Trend line

edit

Atrend line represents a trend, the long-term movement in time series data after other components have been accounted for. It tells whether a particular data set (say GDP, oil prices or stock prices) have increased or decreased over the period of time. A trend line could simply be drawn by eye through a set of data points, but more properly their position and slope is calculated using statistical techniques like linear regression. Trend lines typically are straight lines, although some variations use higher degree polynomials depending on the degree of curvature desired in the line.

Trend lines are sometimes used in business analytics to show changes in data over time. This has the advantage of being simple. Trend lines are often used to argue that a particular action or event (such as training, or an advertising campaign) caused observed changes at a point in time. This is a simple technique, and does not require a control group, experimental design, or a sophisticated analysis technique. However, it suffers from a lack of scientific validity in cases where other potential changes can affect the data.

Epidemiology

edit

Early evidence relating tobacco smoking to mortality and morbidity came from observational studies employing regression analysis. In order to reduce spurious correlations when analyzing observational data, researchers usually include several variables in their regression models in addition to the variable of primary interest. For example, in a regression model in which cigarette smoking is the independent variable of primary interest and the dependent variable is lifespan measured in years, researchers might include education and income as additional independent variables, to ensure that any observed effect of smoking on lifespan is not due to those other socio-economic factors. However, it is never possible to include all possible confounding variables in an empirical analysis. For example, a hypothetical gene might increase mortality and also cause people to smoke more. For this reason, randomized controlled trials are often able to generate more compelling evidence of causal relationships than can be obtained using regression analyses of observational data. When controlled experiments are not feasible, variants of regression analysis such as instrumental variables regression may be used to attempt to estimate causal relationships from observational data.

Finance

edit

The capital asset pricing model uses linear regression as well as the concept of beta for analyzing and quantifying the systematic risk of an investment. This comes directly from the beta coefficient of the linear regression model that relates the return on the investment to the return on all risky assets.

Economics

edit

Linear regression is the predominant empirical tool in economics. For example, it is used to predict consumption spending,[24] fixed investment spending, inventory investment, purchases of a country's exports,[25] spending on imports,[25] the demand to hold liquid assets,[26] labor demand,[27] and labor supply.[27]

Environmental science

edit

Linear regression finds application in a wide range of environmental science applications such as land use,[28] infectious diseases,[29] and air pollution.[30]

Building science

edit

Linear regression is commonly used in building science field studies to derive characteristics of building occupants. In a thermal comfort field study, building scientists usually ask occupants' thermal sensation votes, which range from -3 (feeling cold) to 0 (neutral) to +3 (feeling hot), and measure occupants' surrounding temperature data. A neutral or comfort temperature can be calculated based on a linear regression between the thermal sensation vote and indoor temperature, and setting the thermal sensation vote as zero. However, there has been a debate on the regression direction: regressing thermal sensation votes (y-axis) against indoor temperature (x-axis) or the opposite: regressing indoor temperature (y-axis) against thermal sensation votes (x-axis).[31]

Machine learning

edit

Linear regression plays an important role in the subfield of artificial intelligence known as machine learning. The linear regression algorithm is one of the fundamental supervised machine-learning algorithms due to its relative simplicity and well-known properties.[32]

History

edit

Least squares linear regression, as a means of finding a good rough linear fit to a set of points was performed by Legendre (1805) and Gauss (1809) for the prediction of planetary movement. Quetelet was responsible for making the procedure well-known and for using it extensively in the social sciences.[33]

See also

edit
  • Blinder–Oaxaca decomposition
  • Censored regression model
  • Cross-sectional regression
  • Curve fitting
  • Empirical Bayes method
  • Errors and residuals
  • Lack-of-fit sum of squares
  • Line fitting
  • Linear classifier
  • Linear equation
  • Logistic regression
  • M-estimator
  • Multivariate adaptive regression spline
  • Nonlinear regression
  • Nonparametric regression
  • Normal equations
  • Projection pursuit regression
  • Response modeling methodology
  • Segmented linear regression
  • Standard deviation line
  • Stepwise regression
  • Structural break
  • Support vector machine
  • Truncated regression model
  • Deming regression
  • References

    edit

    Citations

    edit
    1. ^ David A. Freedman (2009). Statistical Models: Theory and Practice. Cambridge University Press. p. 26. A simple regression equation has on the right hand side an intercept and an explanatory variable with a slope coefficient. A multiple regression e right hand side, each with its own slope coefficient
  • ^ Rencher, Alvin C.; Christensen, William F. (2012), "Chapter 10, Multivariate regression – Section 10.1, Introduction", Methods of Multivariate Analysis, Wiley Series in Probability and Statistics, vol. 709 (3rd ed.), John Wiley & Sons, p. 19, ISBN 9781118391679.
  • ^ Hilary L. Seal (1967). "The historical development of the Gauss linear model". Biometrika. 54 (1/2): 1–24. doi:10.1093/biomet/54.1-2.1. JSTOR 2333849.
  • ^ Yan, Xin (2009), Linear Regression Analysis: Theory and Computing, World Scientific, pp. 1–2, ISBN 9789812834119, Regression analysis ... is probably one of the oldest topics in mathematical statistics dating back to about two hundred years ago. The earliest form of the linear regression was the least squares method, which was published by Legendre in 1805, and by Gauss in 1809 ... Legendre and Gauss both applied the method to the problem of determining, from astronomical observations, the orbits of bodies about the sun.
  • ^ a b Tibshirani, Robert (1996). "Regression Shrinkage and Selection via the Lasso". Journal of the Royal Statistical Society, Series B. 58 (1): 267–288. doi:10.1111/j.2517-6161.1996.tb02080.x. JSTOR 2346178.
  • ^ a b Efron, Bradley; Hastie, Trevor; Johnstone, Iain; Tibshirani, Robert (2004). "Least Angle Regression". The Annals of Statistics. 32 (2): 407–451. arXiv:math/0406456. doi:10.1214/009053604000000067. JSTOR 3448465. S2CID 204004121.
  • ^ a b Hawkins, Douglas M. (1973). "On the Investigation of Alternative Regressions by Principal Component Analysis". Journal of the Royal Statistical Society, Series C. 22 (3): 275–286. doi:10.2307/2346776. JSTOR 2346776.
  • ^ a b Jolliffe, Ian T. (1982). "A Note on the Use of Principal Components in Regression". Journal of the Royal Statistical Society, Series C. 31 (3): 300–303. doi:10.2307/2348005. JSTOR 2348005.
  • ^ Williams, Matt; Grajales, Carlos; Kurkiewicz, Dason (2019-11-25). "Assumptions of Multiple Regression: Correcting Two Misconceptions". Practical Assessment, Research, and Evaluation. 18 (1). doi:10.7275/55hn-wk47. ISSN 1531-7714.
  • ^ Berk, Richard A. (2007). "Regression Analysis: A Constructive Critique". Criminal Justice Review. 32 (3): 301–302. doi:10.1177/0734016807304871. S2CID 145389362.
  • ^ Hidalgo, Bertha; Goodman, Melody (2012-11-15). "Multivariate or Multivariable Regression?". American Journal of Public Health. 103 (1): 39–40. doi:10.2105/AJPH.2012.300897. ISSN 0090-0036. PMC 3518362. PMID 23153131.
  • ^ Brillinger, David R. (1977). "The Identification of a Particular Nonlinear Time Series System". Biometrika. 64 (3): 509–515. doi:10.1093/biomet/64.3.509. JSTOR 2345326.
  • ^ Tsao, Min (2022). "Group least squares regression for linear models with strongly correlated predictor variables". Annals of the Institute of Statistical Mathematics. 75 (2): 233–250. arXiv:1804.02499. doi:10.1007/s10463-022-00841-7. S2CID 237396158.
  • ^ Galton, Francis (1886). "Regression Towards Mediocrity in Hereditary Stature". The Journal of the Anthropological Institute of Great Britain and Ireland. 15: 246–263. doi:10.2307/2841583. ISSN 0959-5295. JSTOR 2841583.
  • ^ Britzger, Daniel (2022). "The Linear Template Fit". Eur. Phys. J. C. 82 (8): 731. arXiv:2112.01548. Bibcode:2022EPJC...82..731B. doi:10.1140/epjc/s10052-022-10581-w. S2CID 244896511.
  • ^ Lange, Kenneth L.; Little, Roderick J. A.; Taylor, Jeremy M. G. (1989). "Robust Statistical Modeling Using the t Distribution" (PDF). Journal of the American Statistical Association. 84 (408): 881–896. doi:10.2307/2290063. JSTOR 2290063.
  • ^ Swindel, Benee F. (1981). "Geometry of Ridge Regression Illustrated". The American Statistician. 35 (1): 12–15. doi:10.2307/2683577. JSTOR 2683577.
  • ^ Draper, Norman R.; van Nostrand; R. Craig (1979). "Ridge Regression and James-Stein Estimation: Review and Comments". Technometrics. 21 (4): 451–466. doi:10.2307/1268284. JSTOR 1268284.
  • ^ Hoerl, Arthur E.; Kennard, Robert W.; Hoerl, Roger W. (1985). "Practical Use of Ridge Regression: A Challenge Met". Journal of the Royal Statistical Society, Series C. 34 (2): 114–120. JSTOR 2347363.
  • ^ Narula, Subhash C.; Wellington, John F. (1982). "The Minimum Sum of Absolute Errors Regression: A State of the Art Survey". International Statistical Review. 50 (3): 317–326. doi:10.2307/1402501. JSTOR 1402501.
  • ^ Stone, C. J. (1975). "Adaptive maximum likelihood estimators of a location parameter". The Annals of Statistics. 3 (2): 267–284. doi:10.1214/aos/1176343056. JSTOR 2958945.
  • ^ Goldstein, H. (1986). "Multilevel Mixed Linear Model Analysis Using Iterative Generalized Least Squares". Biometrika. 73 (1): 43–56. doi:10.1093/biomet/73.1.43. JSTOR 2336270.
  • ^ Theil, H. (1950). "A rank-invariant method of linear and polynomial regression analysis. I, II, III". Nederl. Akad. Wetensch., Proc. 53: 386–392, 521–525, 1397–1412. MR 0036489.; Sen, Pranab Kumar (1968). "Estimates of the regression coefficient based on Kendall's tau". Journal of the American Statistical Association. 63 (324): 1379–1389. doi:10.2307/2285891. JSTOR 2285891. MR 0258201..
  • ^ Deaton, Angus (1992). Understanding Consumption. Oxford University Press. ISBN 978-0-19-828824-4.
  • ^ a b Krugman, Paul R.; Obstfeld, M.; Melitz, Marc J. (2012). International Economics: Theory and Policy (9th global ed.). Harlow: Pearson. ISBN 9780273754091.
  • ^ Laidler, David E. W. (1993). The Demand for Money: Theories, Evidence, and Problems (4th ed.). New York: Harper Collins. ISBN 978-0065010985.
  • ^ a b Ehrenberg; Smith (2008). Modern Labor Economics (10th international ed.). London: Addison-Wesley. ISBN 9780321538963.
  • ^ Hoek, Gerard; Beelen, Rob; de Hoogh, Kees; Vienneau, Danielle; Gulliver, John; Fischer, Paul; Briggs, David (2008-10-01). "A review of land-use regression models to assess spatial variation of outdoor air pollution". Atmospheric Environment. 42 (33): 7561–7578. Bibcode:2008AtmEn..42.7561H. doi:10.1016/j.atmosenv.2008.05.057. ISSN 1352-2310.
  • ^ Imai, Chisato; Hashizume, Masahiro (2015). "A Systematic Review of Methodology: Time Series Regression Analysis for Environmental Factors and Infectious Diseases". Tropical Medicine and Health. 43 (1): 1–9. doi:10.2149/tmh.2014-21. hdl:10069/35301. PMC 4361341. PMID 25859149.
  • ^ Milionis, A. E.; Davies, T. D. (1994-09-01). "Regression and stochastic models for air pollution—I. Review, comments and suggestions". Atmospheric Environment. 28 (17): 2801–2810. Bibcode:1994AtmEn..28.2801M. doi:10.1016/1352-2310(94)90083-3. ISSN 1352-2310.
  • ^ Sun, Ruiji; Schiavon, Stefano; Brager, Gail; Arens, Edward; Zhang, Hui; Parkinson, Thomas; Zhang, Chenlu (2024). "Causal Thinking: Uncovering Hidden Assumptions and Interpretations of Statistical Analysis in Building Science". Building and Environment. 259. doi:10.1016/j.buildenv.2024.111530.
  • ^ "Linear Regression (Machine Learning)" (PDF). University of Pittsburgh.
  • ^ Stigler, Stephen M. (1986). The History of Statistics: The Measurement of Uncertainty before 1900. Cambridge: Harvard. ISBN 0-674-40340-1.
  • Sources

    edit
  • Charles Darwin. The Variation of Animals and Plants under Domestication. (1868) (Chapter XIII describes what was known about reversion in Galton's time. Darwin uses the term "reversion".)
  • Draper, N.R.; Smith, H. (1998). Applied Regression Analysis (3rd ed.). John Wiley. ISBN 978-0-471-17082-2.
  • Francis Galton. "Regression Towards Mediocrity in Hereditary Stature," Journal of the Anthropological Institute, 15:246-263 (1886). (Facsimile at: [1])
  • Robert S. Pindyck and Daniel L. Rubinfeld (1998, 4h ed.). Econometric Models and Economic Forecasts, ch. 1 (Intro, incl. appendices on Σ operators & derivation of parameter est.) & Appendix 4.3 (mult. regression in matrix form).
  • Further reading

    edit
    edit

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Linear_regression&oldid=1231333509"
     



    Last edited on 27 June 2024, at 19:41  





    Languages

     


    العربية
    Asturianu
    Беларуская
    Català
    Čeština
    Deutsch
    Eesti
    Ελληνικά
    Español
    Euskara
    فارسی
    Français
    Galego

    Հայերեն
    Hrvatski
    Bahasa Indonesia
    Italiano
    עברית
    Magyar
    Македонски
    Bahasa Melayu

    Norsk bokmål
    Occitan
    Polski
    Português
    Română
    Русский
    Simple English
    Slovenščina
    کوردی
    Српски / srpski
    Suomi
    Svenska
    Türkçe
    Українська
    Tiếng Vit


     

    Wikipedia


    This page was last edited on 27 June 2024, at 19:41 (UTC).

    Content is available under CC BY-SA 4.0 unless otherwise noted.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Terms of Use

    Desktop