Home  

Random  

Nearby  



Log in  



Settings  



Donate  



About Wikipedia  

Disclaimers  



Wikipedia





Magic constant





Article  

Talk  



Language  

Watch  

Edit  





The magic constantormagic sum of a magic square is the sum of numbers in any row, column, or diagonal of the magic square. For example, the magic square shown below has a magic constant of 15. For a normal magic square of order n – that is, a magic square which contains the numbers 1, 2, ..., n2 – the magic constant is .

For normal magic squares of orders n = 3, 4, 5, 6, 7, and 8, the magic constants are, respectively: 15, 34, 65, 111, 175, and 260 (sequence A006003 in the OEIS). For example, a normal 8 × 8 square will always equate to 260 for each row, column, or diagonal. The normal magic constant of order nisn3 + n/2. The largest magic constant of normal magic square which is also a:

Note that 0 and 1 are the only normal magic constants of rational order which are also rational squares.

However, there are infinitely many rational triangular numbers, rational generalized pentagonal numbers and rational tetrahedral numbers which are also magic constants of rational order.

The term magic constantormagic sum is similarly applied to other "magic" figures such as magic stars and magic cubes. Number shapes on a triangular grid divided into equal polyiamond areas containing equal sums give polyiamond magic constant.[1]

Magic stars

edit

The magic constant of an n-pointed normal magic star is  .

Magic series

edit

In 2013 Dirk Kinnaes found the magic series polytope. The number of unique sequences that form the magic constant is now known up to  .[2]

Moment of inertia

edit

In the mass model, the value in each cell specifies the mass for that cell.[3] This model has two notable properties. First it demonstrates the balanced nature of all magic squares. If such a model is suspended from the central cell the structure balances. (consider the magic sums of the rows/columns .. equal mass at an equal distance balance). The second property that can be calculated is the moment of inertia. Summing the individual moments of inertia (distance squared from the center × the cell value) gives the moment of inertia for the magic square, which depends solely on the order of the square.[4]

See also

edit

References

edit
  1. ^ "A303295 - Oeis".
  • ^ Walter Trump http://www.trump.de/magic-squares/
  • ^ Heinz http://www.magic-squares.net/ms-models.htm#A 3 dimensional magic square/
  • ^ Peterson http://www.sciencenews.org/view/generic/id/7485/description/Magic_Square_Physics/
  • edit

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Magic_constant&oldid=1135527104"
     



    Last edited on 25 January 2023, at 05:42  





    Languages

     


    Español
    Esperanto
    Français

    Nederlands

    Português
    Slovenščina
    ி

     

    Wikipedia


    This page was last edited on 25 January 2023, at 05:42 (UTC).

    Content is available under CC BY-SA 4.0 unless otherwise noted.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Terms of Use

    Desktop