Home  

Random  

Nearby  



Log in  



Settings  



Donate  



About Wikipedia  

Disclaimers  



Wikipedia





Manganese(III) oxide





Article  

Talk  



Language  

Watch  

Edit  





Manganese(III) oxide is a chemical compound with the formula Mn2O3. It occurs in nature as the mineral bixbyite (recently changed to bixbyite-(Mn)[3][4]) and is used in the production of ferrites and thermistors.

Manganese(III) oxide
Names
Other names

dimanganese trioxide, manganese sesquioxide, manganic oxide, manganous oxide

Identifiers

CAS Number

3D model (JSmol)

ChemSpider
ECHA InfoCard 100.013.878 Edit this at Wikidata

PubChem CID

RTECS number
  • OP915000
UNII

CompTox Dashboard (EPA)

  • InChI=1S/2Mn.3O ☒N

    Key: GEYXPJBPASPPLI-UHFFFAOYSA-N ☒N

  • InChI=1/2Mn.3O/rMn2O3/c3-1-5-2-4

    Key: GEYXPJBPASPPLI-YNHMASKPAU

  • O=[Mn]O[Mn]=O

Properties

Chemical formula

Mn2O3
Molar mass 157.8743 g/mol
Appearance brown or black crystalline
Density 4.50 g/cm3
Melting point 888 °C (1,630 °F; 1,161 K) (alpha form)
940 °C, decomposes (beta form)

Solubility in water

0.00504 g/100 mL (alpha form)
0.01065 g/100 mL (beta form)
Solubility insoluble in ethanol, acetone
soluble in acid, ammonium chloride

Magnetic susceptibility (χ)

+14,100·10−6cm3/mol
Structure[1]

Crystal structure

Bixbyite, cI80

Space group

Ia3 (No. 206)

Lattice constant

a = 942 pm

Thermochemistry

Std molar
entropy
(S298)

110 J·mol−1·K−1[2]

Std enthalpy of
formation
fH298)

−971 kJ·mol−1[2]
Hazards
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
1
0
0
Related compounds

Other anions

manganese trifluoride, manganese(III) acetate

Other cations

chromium(III) oxide, iron(III) oxide

Related compounds

manganese(II) oxide, manganese dioxide

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

☒N verify (what is checkY☒N ?)

Infobox references

Preparation and chemistry

edit

Heating MnO2 in air at below 800 °C produces α-Mn2O3 (higher temperatures produce Mn3O4).[5] γ-Mn2O3 can be produced by oxidation followed by dehydration of manganese(II) hydroxide.[5] Many preparations of nano-crystalline Mn2O3 have been reported, for example syntheses involving oxidation of MnII salts or reduction of MnO2.[6][7][8]

Manganese(III) oxide is formed by the redox reaction in an alkaline cell:

2 MnO2 + Zn → Mn2O3 + ZnO[citation needed]

Manganese(III) oxide Mn2O3 must not be confused with MnOOH manganese(III) oxyhydroxide. Contrary to Mn2O3, MnOOH is a compound that decomposes at about 300 °C to form MnO2.[9]

Structure

edit

Mn2O3 is unlike many other transition metal oxides in that it does not adopt the corundum (Al2O3) structure.[5] Two forms are generally recognized, α-Mn2O3 and γ-Mn2O3,[10] although a high pressure form with the CaIrO3 structure has been reported too.[11]

α-Mn2O3 has the cubic bixbyite structure, which is an example of a C-type rare earth sesquioxide (Pearson symbol cI80, space group Ia3, #206). The bixbyite structure has been found to be stabilised by the presence of small amounts of Fe3+, pure Mn2O3 has an orthorhombic structure (Pearson symbol oP24, space group Pbca, #61).[12] α-Mn2O3 undergoes antiferromagnetic transition at 80 K. [13]

γ-Mn2O3 has a structure related to the spinel structure of Mn3O4 where the oxide ions are cubic close packed. This is similar to the relationship between γ-Fe2O3 and Fe3O4.[10] γ-Mn2O3isferrimagnetic with a Néel temperature of 39 K.[14]

ε-Mn2O3 takes on a rhombohedral ilmenite structure (the first binary compound known to do so), wherein the manganese cations divided equally into oxidation states 2+ and 4+. ε-Mn2O3 is antiferromagnetic with a Néel temperature of 210 K.[15]

References

edit
  1. ^ Chandiran, Kalaiselvi; Murugesan, Ramesh Aravind; Balaji, Revathi; Andrews, Nirmala Grace; Pitchaimuthu, Sudhagar; Nagamuthu Raja, Krishna Chandar (2020-07-03). "Long single crystalline α-Mn2O3 nanorods: facile synthesis and photocatalytic application". Materials Research Express. 7 (7). IOP Publishing: 074001. doi:10.1088/2053-1591/ab9fbd. ISSN 2053-1591. S2CID 225561660.
  • ^ a b Zumdahl, Steven S. (2009). Chemical Principles 6th Ed. Houghton Mifflin Company. p. A22. ISBN 978-0-618-94690-7.
  • ^ "Bixbyite-(Mn)".
  • ^ IMA 21-H: Redefinition of bixbyite and definition of bixbyite-(Fe) and bixbyite-(Mn). CNMNC Newsletter, 64, 2021; Mineralogical Magazine, 85, 2021).
  • ^ a b c Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 1049. ISBN 978-0-08-037941-8.
  • ^ Shuijin Lei; Kaibin Tang; Zhen Fang; Qiangchun Liu; Huagui Zheng (2006). "Preparation of α-Mn2O3 and MnO from thermal decomposition of MnCO3 and control of morphology". Materials Letters. 60: 53. doi:10.1016/j.matlet.2005.07.070.
  • ^ Zhong-Yong Yuan; Tie-Zhen Ren; Gaohui Du; Bao-Lian Su (2004). "A facile preparation of single-crystalline α-Mn2O3 nanorods by ammonia-hydrothermal treatment of MnO2". Chemical Physics Letters. 389 (1–3): 83. doi:10.1016/j.cplett.2004.03.064.
  • ^ Navin Chandra; Sanjeev Bhasin; Meenakshi Sharma; Deepti Pal (2007). "A room temperature process for making Mn2O3 nano-particles and γ-MnOOH nano-rods". Materials Letters. 61 (17): 3728. doi:10.1016/j.matlet.2006.12.024.
  • ^ Thomas Kohler; Thomas Armbruster; Eugen Libowitzky (1997). "Hydrogen Bonding and Jahn-Teller Distortion in Groutite,α-MnOOH, and Manganite,γ-MnOOH, and Their Relations to the Manganese Dioxides Ramsdellite and Pyrolusite". Journal of Solid State Chemistry. 133 (2): 486–500. doi:10.1006/jssc.1997.7516.
  • ^ a b Wells A.F. (1984) Structural Inorganic Chemistry 5th edition Oxford Science Publications ISBN 0-19-855370-6
  • ^ High Pressure Phase transition in Mn2O3 to the CaIrO3-type Phase Santillan, J.; Shim, S. American Geophysical Union, Fall Meeting 2005, abstract #MR23B-0050
  • ^ Geller S. (1971). "Structure of α-Mn2O3, (Mn0.983Fe0.017)2O3 and (Mn0.37Fe0.63)2O3 and relation to magnetic ordering". Acta Crystallogr B. 27 (4): 821. doi:10.1107/S0567740871002966.
  • ^ Geller S. (1970). "Magnetic and Crystallographic Transitions in Sc+, Cr+, and Ga+ Substituted Mn2O3". Physical Review B. 1 (9): 3763. doi:10.1103/physrevb.1.3763.
  • ^ Kim S. H; Choi B. J; Lee G.H.; Oh S. J.; Kim B.; Choi H. C.; Park J; Chang Y. (2005). "Ferrimagnetism in γ-Manganese Sesquioxide (γ−Mn2O3) Nanoparticles". Journal of the Korean Physical Society. 46 (4): 941.
  • ^ Ovsyannikov, Sergey V.; Tsirlin, Alexander A.; Korobeynikov, Igor V.; Morozova, Natalia V.; Aslandukova, Alena A.; Steinle-Neumann, Gerd; Chariton, Stella; Khandarkhaeva, Saiana; Glazyrin, Konstantin; Wilhelm, Fabrice; Rogalev, Andrei; Dubrovinsky, Leonid (2021-09-06). "Synthesis of Ilmenite-type ε-Mn 2 O 3 and Its Properties". Inorganic Chemistry. 60 (17): 13348–13358. doi:10.1021/acs.inorgchem.1c01666. ISSN 0020-1669. PMID 34415155. S2CID 237242460.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Manganese(III)_oxide&oldid=1157691688"
     



    Last edited on 30 May 2023, at 10:11  





    Languages

     


    العربية
    Azərbaycanca
    تۆرکجه
    Deutsch
    Español
    فارسی
    Français
    Italiano
    Magyar
    Bahasa Melayu
    Nederlands

    Polski
    Português
    Русский
    Simple English
    Српски / srpski
    Srpskohrvatski / српскохрватски
    Suomi
    Українська
    Tiếng Vit


     

    Wikipedia


    This page was last edited on 30 May 2023, at 10:11 (UTC).

    Content is available under CC BY-SA 4.0 unless otherwise noted.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Terms of Use

    Desktop