Home  

Random  

Nearby  



Log in  



Settings  



Donate  



About Wikipedia  

Disclaimers  



Wikipedia





Markov chain Monte Carlo





Article  

Talk  



Language  

Watch  

Edit  





Instatistics, Markov chain Monte Carlo (MCMC) is a class of algorithms used to draw samples from a probability distribution. Given a probability distribution, one can construct a Markov chain whose elements' distribution approximates it – that is, the Markov chain's equilibrium distribution matches the target distribution. The more steps that are included, the more closely the distribution of the sample matches the actual desired distribution.

Markov chain Monte Carlo methods are used to study probability distributions that are too complex or too highly dimensional to study with analytic techniques alone. Various algorithms exist for constructing such Markov chains, including the Metropolis–Hastings algorithm.

Applications

edit

MCMC methods are primarily used for calculating numerical approximationsofmulti-dimensional integrals, for example in Bayesian statistics, computational physics,[1] computational biology[2] and computational linguistics.[3][4]

In Bayesian statistics, Markov chain Monte Carlo methods are typically used to calculate moments and credible intervalsofposterior probability distributions. The use of MCMC methods makes it possible to compute large hierarchical models that require integrations over hundreds to thousands of unknown parameters.[5]

Inrare event sampling, they are also used for generating samples that gradually populate the rare failure region.[citation needed]

General explanation

edit
 
Convergence of the Metropolis–Hastings algorithm. Markov chain Monte Carlo attempts to approximate the blue distribution with the orange distribution.

Markov chain Monte Carlo methods create samples from a continuous random variable, with probability density proportional to a known function. These samples can be used to evaluate an integral over that variable, as its expected valueorvariance.

Practically, an ensemble of chains is generally developed, starting from a set of points arbitrarily chosen and sufficiently distant from each other. These chains are stochastic processes of "walkers" which move around randomly according to an algorithm that looks for places with a reasonably high contribution to the integral to move into next, assigning them higher probabilities.

Random walk Monte Carlo methods are a kind of random simulationorMonte Carlo method. However, whereas the random samples of the integrand used in a conventional Monte Carlo integration are statistically independent, those used in MCMC are autocorrelated. Correlations of samples introduces the need to use the Markov chain central limit theorem when estimating the error of mean values.

These algorithms create Markov chains such that they have an equilibrium distribution[broken anchor] which is proportional to the function given.

Reducing correlation

edit

While MCMC methods were created to address multi-dimensional problems better than generic Monte Carlo algorithms, when the number of dimensions rises they too tend to suffer the curse of dimensionality: regions of higher probability tend to stretch and get lost in an increasing volume of space that contributes little to the integral. One way to address this problem could be shortening the steps of the walker, so that it does not continuously try to exit the highest probability region, though this way the process would be highly autocorrelated and expensive (i.e. many steps would be required for an accurate result). More sophisticated methods such as Hamiltonian Monte Carlo and the Wang and Landau algorithm use various ways of reducing this autocorrelation, while managing to keep the process in the regions that give a higher contribution to the integral. These algorithms usually rely on a more complicated theory and are harder to implement, but they usually converge faster.

Examples

edit

Random walk

edit

Interacting particle methods

edit

Interacting MCMC methodologies are a class of mean-field particle methods for obtaining random samples from a sequence of probability distributions with an increasing level of sampling complexity.[12] These probabilistic models include path space state models with increasing time horizon, posterior distributions w.r.t. sequence of partial observations, increasing constraint level sets for conditional distributions, decreasing temperature schedules associated with some Boltzmann–Gibbs distributions, and many others. In principle, any Markov chain Monte Carlo sampler can be turned into an interacting Markov chain Monte Carlo sampler. These interacting Markov chain Monte Carlo samplers can be interpreted as a way to run in parallel a sequence of Markov chain Monte Carlo samplers. For instance, interacting simulated annealing algorithms are based on independent Metropolis–Hastings moves interacting sequentially with a selection-resampling type mechanism. In contrast to traditional Markov chain Monte Carlo methods, the precision parameter of this class of interacting Markov chain Monte Carlo samplers is only related to the number of interacting Markov chain Monte Carlo samplers. These advanced particle methodologies belong to the class of Feynman–Kac particle models,[13][14] also called Sequential Monte Carlo or particle filter methods in Bayesian inference and signal processing communities.[15] Interacting Markov chain Monte Carlo methods can also be interpreted as a mutation-selection genetic particle algorithm with Markov chain Monte Carlo mutations.

Quasi-Monte Carlo

edit

The quasi-Monte Carlo method is an analog to the normal Monte Carlo method that uses low-discrepancy sequences instead of random numbers.[16][17] It yields an integration error that decays faster than that of true random sampling, as quantified by the Koksma–Hlawka inequality. Empirically it allows the reduction of both estimation error and convergence time by an order of magnitude.[citation needed] Markov chain quasi-Monte Carlo methods[18][19] such as the Array–RQMC method combine randomized quasi–Monte Carlo and Markov chain simulation by simulating   chains simultaneously in a way that better approximates the true distribution of the chain than with ordinary MCMC.[20] In empirical experiments, the variance of the average of a function of the state sometimes converges at rate   or even faster, instead of the   Monte Carlo rate.[21]

Convergence

edit

Usually it is not hard to construct a Markov chain with the desired properties. The more difficult problem is to determine how many steps are needed to converge to the stationary distribution within an acceptable error.[22] A good chain will have rapid mixing: the stationary distribution is reached quickly starting from an arbitrary position. A standard empirical method to assess convergence is to run several independent simulated Markov chains and check that the ratio of inter-chain to intra-chain variances for all the parameters sampled is close to 1.[22][23]

Typically, Markov chain Monte Carlo sampling can only approximate the target distribution, as there is always some residual effect of the starting position. More sophisticated Markov chain Monte Carlo-based algorithms such as coupling from the past can produce exact samples, at the cost of additional computation and an unbounded (though finite in expectation) running time.

Many random walk Monte Carlo methods move around the equilibrium distribution in relatively small steps, with no tendency for the steps to proceed in the same direction. These methods are easy to implement and analyze, but unfortunately it can take a long time for the walker to explore all of the space. The walker will often double back and cover ground already covered.

Further consideration of convergence is at Markov chain central limit theorem. See [24] for a discussion of the theory related to convergence and stationarity of the Metropolis–Hastings algorithm.

Software

edit

Several software programs provide MCMC sampling capabilities, for example:

See also

edit

References

edit

Citations

edit
  1. ^ Kasim, M.F.; Bott, A.F.A.; Tzeferacos, P.; Lamb, D.Q.; Gregori, G.; Vinko, S.M. (September 2019). "Retrieving fields from proton radiography without source profiles". Physical Review E. 100 (3): 033208. arXiv:1905.12934. Bibcode:2019PhRvE.100c3208K. doi:10.1103/PhysRevE.100.033208. PMID 31639953. S2CID 170078861.
  • ^ Gupta, Ankur; Rawlings, James B. (April 2014). "Comparison of Parameter Estimation Methods in Stochastic Chemical Kinetic Models: Examples in Systems Biology". AIChE Journal. 60 (4): 1253–1268. doi:10.1002/aic.14409. PMC 4946376. PMID 27429455.
  • ^ See Gill 2008.
  • ^ See Robert & Casella 2004.
  • ^ Banerjee, Sudipto; Carlin, Bradley P.; Gelfand, Alan P. (2014-09-12). Hierarchical Modeling and Analysis for Spatial Data (Second ed.). CRC Press. p. xix. ISBN 978-1-4398-1917-3.
  • ^ Geman, Stuart; Geman, Donald (November 1984). "Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images". IEEE Transactions on Pattern Analysis and Machine Intelligence. PAMI-6 (6): 721–741. doi:10.1109/TPAMI.1984.4767596. ISSN 0162-8828. PMID 22499653. S2CID 5837272.
  • ^ Gilks, W. R.; Wild, P. (1992-01-01). "Adaptive Rejection Sampling for Gibbs Sampling". Journal of the Royal Statistical Society. Series C (Applied Statistics). 41 (2): 337–348. doi:10.2307/2347565. JSTOR 2347565.
  • ^ Gilks, W. R.; Best, N. G.; Tan, K. K. C. (1995-01-01). "Adaptive Rejection Metropolis Sampling within Gibbs Sampling". Journal of the Royal Statistical Society. Series C (Applied Statistics). 44 (4): 455–472. doi:10.2307/2986138. JSTOR 2986138.
  • ^ Lee, Se Yoon (2021). "Gibbs sampler and coordinate ascent variational inference: A set-theoretical review". Communications in Statistics - Theory and Methods. 51 (6): 1–21. arXiv:2008.01006. doi:10.1080/03610926.2021.1921214. S2CID 220935477.
  • ^ See Stramer 1999.
  • ^ See Green 1995.
  • ^ Del Moral, Pierre (2013). Mean field simulation for Monte Carlo integration. Chapman & Hall/CRC Press. p. 626.
  • ^ Del Moral, Pierre (2004). Feynman–Kac formulae. Genealogical and interacting particle approximations. Springer. p. 575.
  • ^ Del Moral, Pierre; Miclo, Laurent (2000). "Branching and Interacting Particle Systems Approximations of Feynman-Kac Formulae with Applications to Non-Linear Filtering". In Jacques Azéma; Michel Ledoux; Michel Émery; Marc Yor (eds.). Séminaire de Probabilités XXXIV (PDF). Lecture Notes in Mathematics. Vol. 1729. pp. 1–145. doi:10.1007/bfb0103798. ISBN 978-3-540-67314-9.
  • ^ Del Moral, Pierre (2006). "Sequential Monte Carlo samplers". Journal of the Royal Statistical Society. Series B (Statistical Methodology). 68 (3): 411–436. arXiv:cond-mat/0212648. doi:10.1111/j.1467-9868.2006.00553.x. S2CID 12074789.
  • ^ Papageorgiou, Anargyros; Traub, J. F. (1996). "Beating Monte Carlo". Risk. 9 (6): 63–65.
  • ^ Sobol, Ilya M (1998). "On quasi-monte carlo integrations". Mathematics and Computers in Simulation. 47 (2): 103–112. doi:10.1016/s0378-4754(98)00096-2.
  • ^ Chen, S.; Dick, Josef; Owen, Art B. (2011). "Consistency of Markov chain quasi-Monte Carlo on continuous state spaces". Annals of Statistics. 39 (2): 673–701. arXiv:1105.1896. doi:10.1214/10-AOS831.
  • ^ Tribble, Seth D. (2007). Markov chain Monte Carlo algorithms using completely uniformly distributed driving sequences (Diss.). Stanford University. ProQuest 304808879.
  • ^ L'Ecuyer, P.; Lécot, C.; Tuffin, B. (2008). "A Randomized Quasi-Monte Carlo Simulation Method for Markov Chains" (PDF). Operations Research. 56 (4): 958–975. doi:10.1287/opre.1080.0556.
  • ^ L'Ecuyer, P.; Munger, D.; Lécot, C.; Tuffin, B. (2018). "Sorting Methods and Convergence Rates for Array-RQMC: Some Empirical Comparisons". Mathematics and Computers in Simulation. 143: 191–201. doi:10.1016/j.matcom.2016.07.010.
  • ^ a b Gelman, A.; Rubin, D.B. (1992). "Inference from iterative simulation using multiple sequences (with discussion)" (PDF). Statistical Science. 7 (4): 457–511. Bibcode:1992StaSc...7..457G. doi:10.1214/ss/1177011136.
  • ^ Cowles, M.K.; Carlin, B.P. (1996). "Markov chain Monte Carlo convergence diagnostics: a comparative review". Journal of the American Statistical Association. 91 (434): 883–904. CiteSeerX 10.1.1.53.3445. doi:10.1080/01621459.1996.10476956.
  • ^ Hill, S. D.; Spall, J. C. (2019). "Stationarity and Convergence of the Metropolis-Hastings Algorithm: Insights into Theoretical Aspects". IEEE Control Systems Magazine. 39 (1): 56–67. doi:10.1109/MCS.2018.2876959. S2CID 58672766.
  • ^ Foreman-Mackey, Daniel; Hogg, David W.; Lang, Dustin; Goodman, Jonathan (2013-11-25). "emcee: The MCMC Hammer". Publications of the Astronomical Society of the Pacific. 125 (925): 306–312. arXiv:1202.3665. Bibcode:2013PASP..125..306F. doi:10.1086/670067. S2CID 88518555.
  • Sources

    edit
  • Asmussen, Søren; Glynn, Peter W. (2007). Stochastic Simulation: Algorithms and Analysis. Stochastic Modelling and Applied Probability. Vol. 57. Springer.
  • Atzberger, P. "An Introduction to Monte-Carlo Methods" (PDF).
  • Berg, Bernd A. (2004). Markov Chain Monte Carlo Simulations and Their Statistical Analysis. World Scientific.
  • Bolstad, William M. (2010). Understanding Computational Bayesian Statistics. Wiley. ISBN 978-0-470-04609-8.
  • Carlin, Brad; Chib, Siddhartha (1995). "Bayesian Model Choice via Markov Chain Monte Carlo Methods". Journal of the Royal Statistical Society, Series B, 57(3), 473–484.
  • Casella, George; George, Edward I. (1992). "Explaining the Gibbs sampler". The American Statistician. 46 (3): 167–174. CiteSeerX 10.1.1.554.3993. doi:10.2307/2685208. JSTOR 2685208.
  • Chib, Siddhartha; Greenberg, Edward (1995). "Understanding the Metropolis–Hastings Algorithm". The American Statistician. 49 (4): 327–335. doi:10.1080/00031305.1995.10476177. JSTOR 2684568.
  • Gelfand, A.E.; Smith, A.F.M. (1990). "Sampling-Based Approaches to Calculating Marginal Densities". Journal of the American Statistical Association. 85 (410): 398–409. CiteSeerX 10.1.1.512.2330. doi:10.1080/01621459.1990.10476213.
  • Gelman, Andrew; Carlin, John B.; Stern, Hal S.; Rubin, Donald B. (1995). Bayesian Data Analysis (1st ed.). Chapman and Hall. (See Chapter 11.)
  • Geman, S.; Geman, D. (1984). "Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images". IEEE Transactions on Pattern Analysis and Machine Intelligence. 6 (6): 721–741. doi:10.1109/TPAMI.1984.4767596. PMID 22499653. S2CID 5837272.
  • Gilks, W.R.; Richardson, S.; Spiegelhalter, D.J. (1996). Markov Chain Monte Carlo in Practice. Chapman and Hall/CRC.
  • Gill, Jeff (2008). Bayesian methods: a social and behavioral sciences approach (2nd ed.). Chapman and Hall/CRC. ISBN 978-1-58488-562-7.
  • Green, P.J. (1995). "Reversible-jump Markov chain Monte Carlo computation and Bayesian model determination". Biometrika. 82 (4): 711–732. CiteSeerX 10.1.1.407.8942. doi:10.1093/biomet/82.4.711.
  • Neal, Radford M. (2003). "Slice Sampling". Annals of Statistics. 31 (3): 705–767. doi:10.1214/aos/1056562461. JSTOR 3448413.
  • Neal, Radford M. (1993). "Probabilistic Inference Using Markov Chain Monte Carlo Methods".
  • Robert, Christian P.; Casella, G. (2004). Monte Carlo Statistical Methods (2nd ed.). Springer. ISBN 978-0-387-21239-5.
  • Rubinstein, R.Y.; Kroese, D.P. (2007). Simulation and the Monte Carlo Method (2nd ed.). Wiley. ISBN 978-0-470-17794-5.
  • Smith, R.L. (1984). "Efficient Monte Carlo Procedures for Generating Points Uniformly Distributed Over Bounded Regions". Operations Research. 32 (6): 1296–1308. doi:10.1287/opre.32.6.1296. hdl:2027.42/7681.
  • Spall, J.C. (April 2003). "Estimation via Markov Chain Monte Carlo". IEEE Control Systems Magazine. 23 (2): 34–45. doi:10.1109/mcs.2003.1188770.
  • Stramer, O.; Tweedie, R. (1999). "Langevin-Type Models II: Self-Targeting Candidates for MCMC Algorithms". Methodology and Computing in Applied Probability. 1 (3): 307–328. doi:10.1023/A:1010090512027. S2CID 1512689.
  • Further reading

    edit
  • Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. (2007), "Section 15.8. Markov Chain Monte Carlo", Numerical Recipes: The Art of Scientific Computing (3rd ed.), Cambridge University Press, ISBN 978-0-521-88068-8
  • Richey, Matthew (May 2010). "The Evolution of Markov Chain Monte Carlo Methods" (PDF). The American Mathematical Monthly. 117 (5): 383–413. CiteSeerX 10.1.1.295.4478. doi:10.4169/000298910x485923. S2CID 13630404.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Markov_chain_Monte_Carlo&oldid=1228892960"
     



    Last edited on 13 June 2024, at 20:03  





    Languages

     


    العربية
    Català
    Čeština
    Deutsch
    Ελληνικά
    Español
    فارسی
    Français

    Italiano

    Polski
    Русский
    Slovenščina
    Türkçe
    Українська
    Tiếng Vit


     

    Wikipedia


    This page was last edited on 13 June 2024, at 20:03 (UTC).

    Content is available under CC BY-SA 4.0 unless otherwise noted.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Terms of Use

    Desktop