Home  

Random  

Nearby  



Log in  



Settings  



Donate  



About Wikipedia  

Disclaimers  



Wikipedia





Rademacher distribution





Article  

Talk  



Language  

Watch  

Edit  





Inprobability theory and statistics, the Rademacher distribution (which is named after Hans Rademacher) is a discrete probability distribution where a random variate X has a 50% chance of being +1 and a 50% chance of being -1.[1]

Rademacher
Support
PMF
CDF
Mean
Median
Mode N/A
Variance
Skewness
Excess kurtosis
Entropy
MGF
CF

Aseries (that is, a sum) of Rademacher distributed variables can be regarded as a simple symmetrical random walk where the step size is 1.

Mathematical formulation

edit

The probability mass function of this distribution is

 

In terms of the Dirac delta function, as

 

Bounds on sums of independent Rademacher variables

edit

There are various results in probability theory around analyzing the sum of i.i.d. Rademacher variables, including concentration inequalities such as Bernstein inequalities as well as anti-concentration inequalities like Tomaszewski's conjecture.

Concentration inequalities

edit

Let {xi} be a set of random variables with a Rademacher distribution. Let {ai} be a sequence of real numbers. Then

 

where ||a||2 is the Euclidean norm of the sequence {ai}, t > 0 is a real number and Pr(Z) is the probability of event Z.[2]

Let Y = Σ xiai and let Y be an almost surely convergent series in a Banach space. The for t > 0 and s ≥ 1 we have[3]

 

for some constant c.

Let p be a positive real number. Then the Khintchine inequality says that[4]

 

where c1 and c2 are constants dependent only on p.

For p ≥ 1,  

Tomaszewski’s conjecture

edit

In 1986, Bogusław Tomaszewski proposed a question about the distribution of the sum of independent Rademacher variables. A series of works on this question[5][6] culminated into a proof in 2020 by Nathan Keller and Ohad Klein of the following conjecture.[7]

Conjecture. Let  , where   and the  's are independent Rademacher variables. Then

 

For example, when  , one gets the following bound, first shown by Van Zuijlen.[8]

 

The bound is sharp and better than that which can be derived from the normal distribution (approximately Pr > 0.31).

Applications

edit

The Rademacher distribution has been used in bootstrapping.

The Rademacher distribution can be used to show that normally distributed and uncorrelated does not imply independent.

Random vectors with components sampled independently from the Rademacher distribution are useful for various stochastic approximations, for example:

Rademacher random variables are used in the Symmetrization Inequality.

edit

References

edit
  1. ^ Hitczenko, P.; Kwapień, S. (1994). "On the Rademacher series". Probability in Banach Spaces. Progress in probability. Vol. 35. pp. 31–36. doi:10.1007/978-1-4612-0253-0_2. ISBN 978-1-4612-6682-2.
  • ^ Montgomery-Smith, S. J. (1990). "The distribution of Rademacher sums". Proc Amer Math Soc. 109 (2): 517–522. doi:10.1090/S0002-9939-1990-1013975-0.
  • ^ Dilworth, S. J.; Montgomery-Smith, S. J. (1993). "The distribution of vector-valued Radmacher series". Ann Probab. 21 (4): 2046–2052. arXiv:math/9206201. doi:10.1214/aop/1176989010. JSTOR 2244710. S2CID 15159626.
  • ^ Khintchine, A. (1923). "Über dyadische Brüche". Math. Z. 18 (1): 109–116. doi:10.1007/BF01192399. S2CID 119840766.
  • ^ Holzman, Ron; Kleitman, Daniel J. (1992-09-01). "On the product of sign vectors and unit vectors". Combinatorica. 12 (3): 303–316. doi:10.1007/BF01285819. ISSN 1439-6912. S2CID 20281665.
  • ^ Boppana, Ravi B.; Holzman, Ron (2017-08-31). "Tomaszewski's Problem on Randomly Signed Sums: Breaking the 3/8 Barrier". arXiv:1704.00350 [math.CO].
  • ^ Keller, Nathan; Klein, Ohad (2021-08-03). "Proof of Tomaszewski's Conjecture on Randomly Signed Sums". arXiv:2006.16834 [math.CO].
  • ^ van Zuijlen, Martien C. A. (2011). "On a conjecture concerning the sum of independent Rademacher random variables". arXiv:1112.4988 [math.PR].
  • ^ Avron, H.; Toledo, S. (2011). "Randomized algorithms for estimating the trace of an implicit symmetric positive semidefinite matrix". Journal of the ACM. 58 (2): 8. CiteSeerX 10.1.1.380.9436. doi:10.1145/1944345.1944349. S2CID 5827717.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Rademacher_distribution&oldid=1230609684"
     



    Last edited on 23 June 2024, at 17:59  





    Languages

     


    Català
    Deutsch
    Ελληνικά
    Español
    فارسی
    Français
    Italiano
    Magyar
    Slovenščina
    Türkçe
     

    Wikipedia


    This page was last edited on 23 June 2024, at 17:59 (UTC).

    Content is available under CC BY-SA 4.0 unless otherwise noted.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Terms of Use

    Desktop