Home  

Random  

Nearby  



Log in  



Settings  



Donate  



About Wikipedia  

Disclaimers  



Wikipedia





Spherical lune





Article  

Talk  



Language  

Watch  

Edit  





Inspherical geometry, a spherical lune (orbiangle) is an area on a sphere bounded by two half great circles which meet at antipodal points.[1] It is an example of a digon, {2}θ, with dihedral angle θ.[2] The word "lune" derives from luna, the Latin word for Moon.

The two great circles are shown as thin black lines, whereas the spherical lune (shown in green) is outlined in thick black lines. This geometry also defines lunes of greater angles: {2}π-θ, and {2}2π-θ.

Properties

edit

Great circles are the largest possible circles (circumferences) of a sphere; each one divides the surface of the sphere into two equal halves. Two great circles always intersect at two polar opposite points.

Common examples of great circles are lines of longitude (meridians) on a sphere, which meet at the north and south poles.

A spherical lune has two planes of symmetry. It can be bisected into two lunes of half the angle, or it can be bisected by an equatorial line into two right spherical triangles.

Surface area

edit
 
A full circle lune, {2}

The surface area of a spherical lune is 2θ R2, where R is the radius of the sphere and θ is the dihedral angle in radians between the two half great circles.

When this angle equals 2π radians (360°) — i.e., when the second half great circle has moved a full circle, and the lune in between covers the sphere as a spherical monogon — the area formula for the spherical lune gives 4πR2, the surface area of the sphere.

Examples

edit

Ahosohedron is a tessellation of the sphere by lunes. A n-gonal regular hosohedron, {2,n} has n equal lunes of π/n radians. An n-hosohedron has dihedral symmetryDnh, [n,2], (*22n) of order 4n. Each lune individually has cyclic symmetry C2v, [2], (*22) of order 4.

Each hosohedra can be divided by an equatorial bisector into two equal spherical triangles.

Family of regular hosohedra
n 2 3 4 5 6 ...
Hosohedra           ...
Bipyramidal
tiling
          ...

Astronomy

edit
 
The phases of the moon make spherical lunes perceived as the intersection of a semicircle and semi-ellipse.

The visibly lighted portion of the Moon visible from the Earth is a spherical lune. The first of the two intersecting great circles is the terminator between the sunlit half of the Moon and the dark half. The second great circle is a terrestrial terminator that separates the half visible from the Earth from the unseen half. The spherical lune is a lighted crescent shape seen from Earth.

n-sphere lunes

edit
 
Stereographic projection of the 3-sphere's parallels (red), meridians (blue) and hypermeridians (green). Lunes exist between pairs of blue meridian arcs.

Lunes can be defined on higher dimensional spheres as well.

In 4-dimensions a 3-sphere is a generalized sphere. It can contain regular digon lunes as {2}θ,φ, where θ and φ are two dihedral angles.

For example, a regular hosotope {2,p,q} has digon faces, {2}2π/p,2π/q, where its vertex figure is a spherical platonic solid, {p,q}. Each vertex of {p,q} defines an edge in the hosotope and adjacent pairs of those edges define lune faces. Or more specifically, the regular hosotope {2,4,3}, has 2 vertices, 8 180° arc edges in a cube, {4,3}, vertex figure between the two vertices, 12 lune faces, {2}π/4,π/3, between pairs of adjacent edges, and 6 hosohedral cells, {2,p}π/3.

References

edit
  1. ^ Davis, Elwyn H. (1999). "Area of spherical triangles". The Mathematics Teacher. 92 (2): 150–153. doi:10.5951/MT.92.2.0150. JSTOR 27970882.
  • ^ Weisstein, Eric W. "Spherical Lune". MathWorld.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Spherical_lune&oldid=1231837758"
     



    Last edited on 30 June 2024, at 14:48  





    Languages

     


    العربية
    Ελληνικά
    Español
    Français

    Italiano
    Română
     

    Wikipedia


    This page was last edited on 30 June 2024, at 14:48 (UTC).

    Content is available under CC BY-SA 4.0 unless otherwise noted.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Terms of Use

    Desktop