Home  

Random  

Nearby  



Log in  



Settings  



Donate  



About Wikipedia  

Disclaimers  



Wikipedia





Stochastic thermodynamics





Article  

Talk  



Language  

Watch  

Edit  





Stochastic thermodynamics is an emergent field of research in statistical mechanics that uses stochastic variables to better understand the non-equilibrium dynamics present in many microscopic systems[1] such as colloidal particles, biopolymers (e.g. DNA, RNA, and proteins), enzymes, and molecular motors.[a][5][clarify]

Overview

edit

When a microscopic machine (e.g. a MEM) performs useful work it generates heat and entropy as a byproduct of the process, however it is also predicted that this machine will operate in "reverse" or "backwards" over appreciable short periods. That is, heat energy from the surroundings will be converted into useful work. For larger engines, this would be described as a violation of the second law of thermodynamics, as entropy is consumed rather than generated. Loschmidt's paradox[6] states that in a time reversible system, for every trajectory there exists a time-reversed anti-trajectory. As the entropy production of a trajectory and its equal anti-trajectory are of identical magnitude but opposite sign, then, so the argument goes, one cannot prove that entropy production is positive.[7]

For a long time, exact results in thermodynamics were only possible in linear systems capable of reaching equilibrium, leaving other questions like the Loschmidt paradox unsolved. During the last few decades fresh approaches have revealed general laws applicable to non-equilibrium system which are described by nonlinear equations, pushing the range of exact thermodynamic statements beyond the realm of traditional linear solutions. These exact results are particularly relevant for small systems where appreciable (typically non-Gaussian) fluctuations occur. Thanks to stochastic thermodynamics it is now possible to accurately predict distribution functions of thermodynamic quantities relating to exchanged heat, applied work or entropy production for these systems.[8]

Fluctuation theorem

edit

The mathematical resolution to Loschmidt's paradox is called the (steady state) fluctuation theorem (FT), which is a generalisation of the second law of thermodynamics. The FT shows that as a system gets larger or the trajectory duration becomes longer, entropy-consuming trajectories become more unlikely, and the expected second law behaviour is recovered.

The FT was first put forward by Evans et al. (1993)[9] and much of the work done in developing and extending the theorem was accomplished by theoreticians and mathematicians interested in nonequilibrium statistical mechanics.[b][7]

The first observation and experimental proof of Evan's fluctuation theorem (FT) was performed by Wang et al. (2002)[10]

Jarzynski equality

edit

Siefert writes:[8]

Jarzynski (1997a, 1997b) proved a remarkable relation which allows to express the free energy difference between two equilibrium systems by a nonlinear average over the work required to drive the system in a non-equilibrium process from one state to the other. By comparing probability distributions for the work spent in the original process with the time-reversed one, Crooks found a “refinement” of the Jarzynski relation (JR),[11] now called the Crooks fluctuation theorem. Both, this relation and another refinement of the JR, the Hummer-Szabo relation became particularly useful for determining free energy differences and landscapes of biomolecules. These relations are the most prominent ones within a class of exact results (some of which found even earlier and then rediscovered) valid for non-equilibrium systems driven by time-dependent forces. A close analogy to the JR, which relates different equilibrium states, is the Hatano-Sasa relation that applies to transitions between two different non-equilibrium steady states.

This is shown to be a special case of a more general relation.

Stochastic energetics

edit

History

edit

Siefert writes:[8]

Classical thermodynamics, at its heart, deals with general laws governing the transformations of a system, in particular, those involving the exchange of heat, work and matter with an environment. As a central result, total entropy production is identified that in any such process can never decrease, leading, inter alia, to fundamental limits on the efficiency of heat engines and refrigerators.[8]
The thermodynamic characterisation of systems in equilibrium got its microscopic justification from equilibrium statistical mechanics which states that for a system in contact with a heat bath the probability to find it in any specific microstate is given by the Boltzmann factor. For small deviations from equilibrium, linear response theory allows to express transport properties caused by small external fields through equilibrium correlation functions. On a more phenomenological level, linear irreversible thermodynamics provides a relation between such transport coefficients and entropy production in terms of forces and fluxes. Beyond this linear response regime, for a long time, no universal exact results were available.[8]
During the last 20 years fresh approaches have revealed general laws applicable to non-equilibrium system thus pushing the range of validity of exact thermodynamic statements beyond the realm of linear response deep into the genuine non-equilibrium region. These exact results, which become particularly relevant for small systems with appreciable (typically non-Gaussian) fluctuations, generically refer to distribution functions of thermodynamic quantities like exchanged heat, applied work or entropy production.[8]
Stochastic thermodynamics combines the stochastic energetics introduced by Sekimoto (1998)[12] with the idea that entropy can consistently be assigned to a single fluctuating trajectory.[12]

Open research

edit

Quantum stochastic thermodynamics

edit

Stochastic thermodynamics can be applied to driven (i.e. open) quantum systems whenever the effects of quantum coherence can be ignored. The dynamics of an open quantum system is then equivalent to a classical stochastic one. However, this is sometimes at the cost of requiring unrealistic measurements at the beginning and end of a process.[c][13]

Understanding non-equilibrium quantum thermodynamics more broadly is an important and active area of research. The efficiency of some computing and information theory tasks can be greatly enhanced when using quantum correlated states; quantum correlations can be used not only as a valuable resource in quantum computation, but also in the realm of quantum thermodynamics.[14] New types of quantum devices in non-equilibrium states function very differently to their classical counterparts. For example, it has been theoretically shown that non-equilibrium quantum ratchet systems function far more efficiently then that predicted by classical thermodynamics.[d][15] It has also been shown that quantum coherence can be used to enhance the efficiency of systems beyond the classical Carnot limit. This is because it could be possible to extract work, in the form of photons, from a single heat bath. Quantum coherence can be used in effect to play the role of Maxwell's demon[16] though the broader information theory based interpretation of the second law of thermodynamics is not violated.[e][21]

Quantum versions of stochastic thermodynamics have been studied for some time[f] and the past few years have seen a surge of interest in this topic.[c] Quantum mechanics involves profound issues around the interpretation of reality (e.g. the Copenhagen interpretation, many-worlds, de Broglie-Bohm theory etc are all competing interpretations that try to explain the unintuitive results of quantum theory) . It is hoped that by trying to specify the quantum-mechanical definition of work, dealing with open quantum systems, analyzing exactly solvable models, or proposing and performing experiments to test non-equilibrium predictions,[g] important insights into the interpretation of quantum mechanics and the true nature of reality will be gained.[26]

Applications of non-equilibrium work relations, like the Jarzynski equality, have recently been proposed for the purposes of detecting quantum entanglement (Hide & Vedral 2010) and to improving optimization problems (minimize or maximize a function of multivariables called the cost function) via quantum annealing (Ohzeki & Nishimori 2011).[26]

Active baths

edit

Until recently thermodynamics has only considered systems coupled to a thermal bath and, therefore, satisfying Boltzmann statistics. However, some systems do not satisfy these conditions and are far from equilibrium such as living matter, for which fluctuations are expected to be non-Gaussian.[27]

Active particle systems are able to take energy from their environment and drive themselves far from equilibrium. An important example of active matter is constituted by objects capable of self propulsion. Thanks to this property, they feature a series of novel behaviours that are not attainable by matter at thermal equilibrium, including, for example, swarming and the emergence of other collective properties.[28] A passive particle is considered in an active bath when it is in an environment where a wealth of active particles are present. These particles will exert nonthermal forces on the passive object so that it will experience non-thermal fluctuations and will behave widely different from a passive Brownian particle in a thermal bath. The presence of an active bath can significantly influence the microscopic thermodynamics of a particle. Experiments have suggested that the Jarzynski equality does not hold in some cases due to the presence of non-Boltzmann statistics in active baths.[h] This observation points towards a new direction in the study of non-equilibrium statistical physics and stochastic thermodynamics, where also the environment itself is far from equilibrium.[30]

Active baths are a question of particular importance in biochemistry. For example, biomolecules within cells are coupled with an active bath due to the presence of molecular motors within the cytoplasm, which leads to striking and largely not yet understood phenomena such as the emergence of anomalous diffusion (Barkai et al., 2012). Also, protein folding might be facilitated by the presence of active fluctuations (Harder et al., 2014b) and active matter dynamics could play a central role in several biological functions (Mallory et al., 2015; Shin et al., 2015; Suzuki et al., 2015). It is an open question to what degree stochastic thermodynamics can be applied to systems coupled to active baths.[27]

References

edit

Notes

edit
  1. ^ See Seifert (2008),[2] Seifert (2012)[3] and Jarzynski (2011)[4] for academic review articles of stochastic thermodynamics.
  • ^ Evan's original numerical analysis was shown heuristically and related to a thermostatted shear-driven fluid in contact with a heat bath. It was later mathematically proven for a large class of systems using concepts from chaotic dynamicsbyGallavotti & Cohen (1995), for driven Langevin dynamicsbyKurchan (1998) and for driven diffusive dynamicsbyLebowitz & Spohn (1999). A variant, a transient fluctuation theorem valid for relaxation towards the steady state was later found by Evans & Searles (1994).[8]
  • ^ a b See Esposito et al. (2009) and Campisi et al. (2011) for academic review articles on non-equilibrium quantum fluctuations[13]
  • ^ See for example Yukawa et al. (1997), Reimann et al. (1997), Tatara et al. (1998)[15]
  • ^ See for example Scully (2001),[17] Scully et al. (2003),[16] Dillenschneider & Lutz (2009),[18] Roßnagel et al. (2014),[19] and Roßnagel et al. (2016)[20]
  • ^ See for example Yukawa (2000)[22] and Mukamel (2003)[23]
  • ^ See for example Huber et al. (2008)[24] and An et al. (2014)[25]
  • ^ See for example Argun et al. (2016)[29]
  • Citations

    edit
    1. ^ Peliti & Pigolotti 2021, p. [page needed].
  • ^ Campisi et al. 2011, p. 3; Jarzynski 2011, p. 347.
  • ^ Bertini et al. 2015, p. 4; Bechinger et al. 2016, p. 45.
  • ^ Campisi et al. 2011, p. 3; Seifert 2012, p. 10; Bechinger et al. 2016, p. 45.
  • ^ Seifert 2012, p. 7.
  • ^ Loschmidt 1876.
  • ^ a b Wang et al. 2002, p. 050601-1.
  • ^ a b c d e f g Seifert 2012, p. 6.
  • ^ Gerstner 2002; Wang et al. 2002, p. 1; Seifert 2008, p. 1; Seifert 2012, p. 6; Jarzynski 2011, p. 331; Campisi et al. 2011, p. 3.
  • ^ Chalmers 2002; Gerstner 2002; Whitehouse 2002.
  • ^ Crooks 1999.
  • ^ a b Seifert 2008, p. 1.
  • ^ a b Seifert 2012, p. 9.
  • ^ Dillenschneider & Lutz 2009, p. 6.
  • ^ a b Yukawa 2000, p. 1.
  • ^ a b Maruyama et al. 2009, p. 20.
  • ^ Horodecki et al. 2007, p. 80; Maruyama et al. 2009, p. 20.
  • ^ Modi et al. 2012, p. 43.
  • ^ Johannes Gutenberg Universitaet Mainz 2014; Zyga 2014.
  • ^ Cartlidge 2015.
  • ^ Dillenschneider & Lutz 2009, pp. 5–6.
  • ^ Esposito et al. 2009, p. 2; Jarzynski 2011, p. 348; Campisi et al. 2011, p. 8.
  • ^ Esposito et al. 2009, p. 2, 8; Jarzynski 2011, p. 348; Campisi et al. 2011, p. 13.
  • ^ Campisi et al. 2011, p. 16; Jarzynski 2011, p. 348.
  • ^ Roßnagel et al. 2016, p. 1.
  • ^ a b Jarzynski 2011, p. 348.
  • ^ a b Bechinger et al. 2016, p. 45.
  • ^ Bechinger et al. 2016, p. 2.
  • ^ Bechinger et al. 2016, p. 12, 26, 45.
  • ^ Bechinger et al. 2016, p. 26.
  • Academic references

    edit
  • Argun, Aykut; Moradi, Ali-Reza; Pince, Erçağ; Bagci, Gokhan Baris; Volpe, Giovanni (2016). "Experimental evidence of the failure of Jarzynski equality in active bath". arXiv:1601.01123 [cond-mat.soft].
  • Bechinger, Clemens; Di Leonardo, Roberto; Löwen, Hartmut; Reichhardt, Charles; Volpe, Giorgio; Volpe, Giovanni (2016). "Active Particles in Complex and Crowded Environments". Reviews of Modern Physics. 88 (4): 045006. arXiv:1602.00081v2. Bibcode:2016RvMP...88d5006B. doi:10.1103/RevModPhys.88.045006. hdl:11693/36533. ISSN 0034-6861. S2CID 14940249.
  • Bertini, Lorenzo; De Sole, Alberto; Gabrielli, Davide; Jona-Lasinio, Giovanni; Landim, Claudio (2015). "Macroscopic fluctuation theory". Reviews of Modern Physics. 87 (2): 593–636. arXiv:1404.6466. Bibcode:2015RvMP...87..593B. doi:10.1103/RevModPhys.87.593. ISSN 0034-6861. S2CID 119164130.
  • Campisi, Michele; Hänggi, Peter; Talkner, Peter (2011). "Colloquium: Quantum fluctuation relations: Foundations and applications". Reviews of Modern Physics. 83 (3): 771–791. arXiv:1012.2268. Bibcode:2011RvMP...83..771C. CiteSeerX 10.1.1.760.2265. doi:10.1103/RevModPhys.83.771. ISSN 0034-6861. S2CID 119200058.
  • Crooks, Gavin E. (1999). "Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences". Physical Review E. 60 (3): 2721–2726. arXiv:cond-mat/9901352. Bibcode:1999PhRvE..60.2721C. doi:10.1103/PhysRevE.60.2721. PMID 11970075. S2CID 1813818.
  • Dillenschneider, R.; Lutz, E. (2009). "Energetics of quantum correlations". EPL (Europhysics Letters). 88 (5): 50003. arXiv:0803.4067. Bibcode:2009EL.....8850003D. doi:10.1209/0295-5075/88/50003. ISSN 0295-5075. S2CID 119262651.
  • Esposito, Massimiliano; Harbola, Upendra; Mukamel, Shaul (2009). "Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems". Reviews of Modern Physics. 81 (4): 1665–1702. arXiv:0811.3717. Bibcode:2009RvMP...81.1665E. doi:10.1103/RevModPhys.81.1665. ISSN 0034-6861. S2CID 56003679.
  • Evans, Denis J.; Cohen, E. G. D.; Morriss, G. P. (1993). "Probability of second law violations in shearing steady states". Physical Review Letters. 71 (15): 2401–2404. Bibcode:1993PhRvL..71.2401E. doi:10.1103/PhysRevLett.71.2401. ISSN 0031-9007. PMID 10054671.
  • Evans, Denis J.; Searles, Debra J. (1994). "Equilibrium microstates which generate second law violating steady states" (PDF). Physical Review E. 50 (2): 1645–1648. Bibcode:1994PhRvE..50.1645E. doi:10.1103/PhysRevE.50.1645. ISSN 1063-651X. PMID 9962139.
  • Gallavotti, G.; Cohen, E. G. D. (2 April 1995). "Dynamical Ensembles in Nonequilibrium Statistical Mechanics". Physical Review Letters. 74 (14): 2694–2697. arXiv:chao-dyn/9410007. Bibcode:1995PhRvL..74.2694G. doi:10.1103/PhysRevLett.74.2694. ISSN 0031-9007. PMID 10057994. S2CID 259762.
  • Hide, Jenny; Vedral, Vlatko (2010). "Detecting entanglement with Jarzynski's equality". Physical Review A. 81 (6): 062303. arXiv:0907.0179. Bibcode:2010PhRvA..81f2303H. doi:10.1103/PhysRevA.81.062303. ISSN 1050-2947. S2CID 119109512.
  • Horodecki, Ryszard; Horodecki, Paweł; Horodecki, Michał; Horodecki, Karol (20 Apr 2007). "Quantum entanglement". Reviews of Modern Physics. 81 (2): 865–942. arXiv:quant-ph/0702225v2. Bibcode:2009RvMP...81..865H. doi:10.1103/RevModPhys.81.865. S2CID 59577352.
  • Huber, Gerhard; Schmidt-Kaler, Ferdinand; Deffner, Sebastian; Lutz, Eric (2008). "Employing Trapped Cold Ions to Verify the Quantum Jarzynski Equality". Physical Review Letters. 101 (7): 070403. arXiv:0808.0334. Bibcode:2008PhRvL.101g0403H. doi:10.1103/PhysRevLett.101.070403. ISSN 0031-9007. PMID 18764513. S2CID 15750989.
  • Jarzynski, C. (1997a). "Nonequilibrium Equality for Free Energy Differences". Physical Review Letters. 78 (14): 2690–2693. arXiv:cond-mat/9610209. Bibcode:1997PhRvL..78.2690J. doi:10.1103/PhysRevLett.78.2690. ISSN 0031-9007. S2CID 16112025.
  • Jarzynski, C. (1997b). "Equilibrium free-energy differences from nonequilibrium measurements: A master-equation approach". Physical Review E. 56 (5): 5018–5035. arXiv:cond-mat/9610209. Bibcode:1997PhRvE..56.5018J. doi:10.1103/PhysRevE.56.5018. ISSN 1063-651X. S2CID 119101580.
  • Jarzynski, Christopher (2011). "Equalities and Inequalities: Irreversibility and the Second Law of Thermodynamics at the Nanoscale" (PDF). Annual Review of Condensed Matter Physics. 2 (1): 329–351. Bibcode:2011ARCMP...2..329J. doi:10.1146/annurev-conmatphys-062910-140506. ISSN 1947-5454.
  • Kurchan, Jorge (1998). "Fluctuation theorem for stochastic dynamics". Journal of Physics A: Mathematical and General. 31 (16): 3719–3729. arXiv:cond-mat/9709304. Bibcode:1998JPhA...31.3719K. CiteSeerX 10.1.1.305.2208. doi:10.1088/0305-4470/31/16/003. ISSN 0305-4470. S2CID 11226039.
  • Lebowitz, Joel L.; Spohn, Herbert (1999). "A Gallavotti–Cohen-Type Symmetry in the Large Deviation Functional for Stochastic Dynamics". Journal of Statistical Physics. 95 (1/2): 333–365. arXiv:cond-mat/9811220. Bibcode:1999JSP....95..333L. doi:10.1023/A:1004589714161. ISSN 0022-4715. S2CID 16878926.
  • Loschmidt, Joseph (1876).『Über den Zustand des Wärmegleichgewichtes eines Systems von Körpern mit Rücksicht auf die Schwerkraft』[About the state of thermal equilibrium of a system of bodies with regard to gravity]. Sitzungsber. Der Kais. Akad. D. W. Math. Naturw. II (in German). 73: 128.
  • Maruyama, Koji; Nori, Franco; Vedral, Vlatko (2009). "Colloquium: The physics of Maxwell's demon and information". Reviews of Modern Physics. 81 (1): 1–23. arXiv:0707.3400. Bibcode:2009RvMP...81....1M. doi:10.1103/RevModPhys.81.1. ISSN 0034-6861. S2CID 18436180.
  • Martínez, I. A.; Roldán, É; Dinis, L.; Petrov, D.; Parrondo, J. M. R.; Rica, R. A. (January 2016). "Brownian Carnot engine". Nature Physics. 12 (1): 67–70. doi:10.1038/nphys3518. ISSN 1745-2481. PMC 4907353.
  • Modi, Kavan; Brodutch, Aharon; Cable, Hugo; Paterek, Tomasz; Vedral, Vlatko (2012). "The classical-quantum boundary for correlations: Discord and related measures". Reviews of Modern Physics. 84 (4): 1655–1707. arXiv:1112.6238. Bibcode:2012RvMP...84.1655M. doi:10.1103/RevModPhys.84.1655. ISSN 0034-6861. S2CID 119698121.
  • Mukamel, Shaul (2003). "Quantum Extension of the Jarzynski Relation: Analogy with Stochastic Dephasing" (PDF). Physical Review Letters. 90 (17): 170604. Bibcode:2003PhRvL..90q0604M. doi:10.1103/PhysRevLett.90.170604. ISSN 0031-9007. PMID 12786064. S2CID 13392358.
  • Pal, P. S.; Deffner, Sebastian (2020). "Stochastic thermodynamics of relativistic Brownian motion". New Journal of Physics. 22 (7): 073054. arXiv:2003.02136. Bibcode:2020NJPh...22g3054P. doi:10.1088/1367-2630/ab9ce6.
  • Peliti, Luca; Pigolotti, Simone (2021). Stochastic Thermodynamics: An Introduction. Princeton: Princeton University Press. ISBN 978-0-521-85103-9.
  • Reimann, Peter; Grifoni, Milena; Hänggi, Peter (1997). "Quantum Ratchets" (PDF). Physical Review Letters. 79 (1): 10–13. Bibcode:1997PhRvL..79...10R. doi:10.1103/PhysRevLett.79.10. ISSN 0031-9007. S2CID 14640168. Archived from the original (PDF) on 2017-02-11.
  • Roßnagel, J.; Abah, O.; Schmidt-Kaler, F.; Singer, K.; Lutz, E. (2014). "Nanoscale Heat Engine Beyond the Carnot Limit". Physical Review Letters. 112 (3): 030602. arXiv:1308.5935. Bibcode:2014PhRvL.112c0602R. doi:10.1103/PhysRevLett.112.030602. ISSN 0031-9007. PMID 24484127. S2CID 1826585.
  • Roßnagell, J.; Dawkins, S. T.; Tolazzi, K. N.; Abah, O.; Lutz, E.; Schmidt-Kaler, F.; Singer, K. (2016). "A single-atom heat engine". Science. 352 (6283): 325–329. arXiv:1510.03681. Bibcode:2016Sci...352..325R. doi:10.1126/science.aad6320. ISSN 0036-8075. PMID 27081067. S2CID 44229532.
  • Scully, Marlan O. (2001). "Extracting Work from a Single Thermal Bath via Quantum Negentropy". Physical Review Letters. 87 (22): 220601. Bibcode:2001PhRvL..87v0601S. doi:10.1103/PhysRevLett.87.220601. ISSN 0031-9007. PMID 11736390.
  • Scully, Marlan O.; Zubairy, M. Suhail; Agarwal, Girish S.; Walther, Herbert. (2003). "Extracting Work from a Single Heat Bath via Vanishing Quantum Coherence". Science. 299 (5608): 862–864. Bibcode:2003Sci...299..862S. doi:10.1126/science.1078955. ISSN 0036-8075. PMID 12511655. S2CID 120884236.
  • Seifert, U. (2008). "Stochastic thermodynamics: principles and perspectives". The European Physical Journal B. 64 (3–4): 423–431. arXiv:0710.1187. Bibcode:2008EPJB...64..423S. doi:10.1140/epjb/e2008-00001-9. ISSN 1434-6028. S2CID 18607099.
  • Ohzeki, Masayuki; Nishimori, Hidetoshi (2011). "Quantum annealing with Jarzynski equality". Computer Physics Communications. 182 (1): 257–259. arXiv:1007.1277. Bibcode:2011CoPhC.182..257O. doi:10.1016/j.cpc.2010.07.008. ISSN 0010-4655. PMID 20867896. S2CID 274174.
  • Seifert, Udo (2012). "Stochastic thermodynamics, fluctuation theorems and molecular machines". Reports on Progress in Physics. 75 (12): 126001. arXiv:1205.4176. Bibcode:2012RPPh...75l6001S. doi:10.1088/0034-4885/75/12/126001. ISSN 0034-4885. PMID 23168354. S2CID 782930.
  • Sekimoto, Ken (1998). "Langevin Equation and Thermodynamics" (PDF). Progress of Theoretical Physics Supplement. 130: 17–27. Bibcode:1998PThPS.130...17S. doi:10.1143/PTPS.130.17. ISSN 0375-9687.
  • Tatara, Gen; Kikuchi, Makoto; Yukawa, Satoshi; Matsukawa, Hiroshi (1998). "Dissipation Enhanced Asymmetric Transport in Quantum Ratchets". Journal of the Physical Society of Japan. 67 (4): 1090–1093. arXiv:cond-mat/9711045. Bibcode:1998JPSJ...67.1090T. doi:10.1143/JPSJ.67.1090. ISSN 0031-9015. S2CID 11253455.
  • Wang, G. M.; Sevick, E. M.; Mittag, Emil; Searles, Debra J.; Evans, Denis J. (2002). "Experimental Demonstration of Violations of the Second Law of Thermodynamics for Small Systems and Short Time Scales" (PDF). Physical Review Letters. 89 (5): 050601. Bibcode:2002PhRvL..89e0601W. doi:10.1103/PhysRevLett.89.050601. hdl:10440/854. ISSN 0031-9007. PMID 12144431.
  • Yukawa, Satoshi; Kikuchi, Macoto; Tatara, Gen; Matsukawa, Hiroshi (1997). "Quantum Ratchets". Journal of the Physical Society of Japan. 66 (10): 2953–2956. arXiv:cond-mat/9706222. Bibcode:1997JPSJ...66.2953Y. doi:10.1143/JPSJ.66.2953. ISSN 0031-9015. S2CID 16578514.
  • Yukawa, Satoshi (2000). "A Quantum Analogue of the Jarzynski Equality". Journal of the Physical Society of Japan. 69 (8): 2367–2370. arXiv:cond-mat/0007456. Bibcode:2000JPSJ...69.2367Y. doi:10.1143/JPSJ.69.2367. ISSN 0031-9015. S2CID 119097589.
  • Press

    edit
  • Chalmers, Matthew (19 July 2002). "Second law of thermodynamics "broken"". New Scientist. Archived from the original on 31 January 2017.
  • Gerstner, Ed (23 July 2002). "Second law broken: Small-scale energy fluctuations could limit minaturization". Nature. doi:10.1038/news020722-2. Archived from the original on 29 January 2013.
  • Johannes Gutenberg Universitaet Mainz (3 February 2014). "Prototype of single ion heat engine created". ScienceDaily.
  • Whitehouse, David (18 July 2002). "Beads of doubt". BBC News. Archived from the original on 2 September 2013.
  • Zyga, Lisa (27 January 2014). "Nanoscale heat engine exceeds standard efficiency limit". Phys.org. Archived from the original on 4 April 2015.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Stochastic_thermodynamics&oldid=1231122537"
     



    Last edited on 26 June 2024, at 15:57  





    Languages

     


    العربية
    Italiano
     

    Wikipedia


    This page was last edited on 26 June 2024, at 15:57 (UTC).

    Content is available under CC BY-SA 4.0 unless otherwise noted.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Terms of Use

    Desktop