Home  

Random  

Nearby  



Log in  



Settings  



Donate  



About Wikipedia  

Disclaimers  



Wikipedia





TSI slant





Article  

Talk  



Language  

Watch  

Edit  





The Triple Sugar Iron (TSI) test is a microbiological test roughly named for its ability to test a microorganism's ability to ferment sugars and to produce hydrogen sulfide.[1] It is often used to differentiate enteric bacteria including Salmonella and Shigella.

TSI agar slant results: (from left) preinoculated (as control), P. aeruginosa, E. coli, Salmonella Typhimurium, Shigella flexneri

Composition

edit

The TSI slant is a test tube that contains agar, a pH-sensitive dye (phenol red), 1% lactose, 1% sucrose, 0.1% glucose,[2] and sodium thiosulfate and ferrous sulfateorferrous ammonium sulfate.

All of these ingredients are mixed together, heated to sterility, and allowed to solidify in the test tube at a slanted angle. The slanted shape of this medium provides an array of surfaces that are either exposed to oxygen-containing air in varying degrees (an aerobic environment) or not exposed to air (an anaerobic environment).

TSI agar medium was developed based on Kligler's Iron Agar, which had been used for the determination of lactose-fermentative bacteria, by addition of sucrose to be able to detect sucrose-fermentative bacteria, also.[3]

Interpretation of results

edit

Bacteria that ferment any of the three sugars in the medium will produce byproducts.[4] These byproducts are usually acids, which will change the color of the red pH-sensitive dye (phenol red) to a yellow color. Position of the color change distinguishes the acid production associated with glucose fermentation from the acidic byproducts of lactose or sucrose fermentation. Many bacteria that can ferment sugars in the anaerobic butt of the tube are enterobacteria.no . If this occurs, the newly formed hydrogen sulfide (H
2
S
) reacts with ferrous sulfate in the medium to form ferrous sulfide, which is visible as a black precipitate. Examples of sulfide-producing bacteria include Salmonella, Proteus, Citrobacter and Edwardsiella species. The blackening of the medium is almost always observed in the butt (bottom) of the medium.

A bacterium that is a non-lactose fermenter and ferments glucose, initially causes a yellow slant/yellow bottom (acid/acid reaction) after 8 hours but then converts to a red slant/yellow bottom after 24 hours (alkali/acid reaction). Whereas if it ferments both lactose and glucose, it results in a yellow/yellow tube and remains that way due to the large amount of acid produced in the reaction. Blackening of the bottom due to H2S production may mask the acid reaction (yellow) in the bottom of the tube. Salmonella enterica serovar Typhi may result in blackening of the medium at the interface of bottom and the slant.

 
Various reactions seen in TSI agar

Under anaerobic conditions (as occur toward the bottom of the tube) some bacteria use thiosulfate as an electron acceptor and reduce it to hydrogen gas. This is not very soluble and may accumulate as bubbles along the inoculation track, between the agar and the glass, or in the fluid which accumulates at the bottom of the slant. Hydrogen production may lift the agar from the butt of the tube or fracture the agar (crack the agar). Carbon dioxide, if produced, may not show as bubbles because it is far more soluble in the medium.

See also

edit

References

edit
  1. ^ "TSI Reactions". Retrieved 2008-11-17.
  • ^ "TSI". Archived from the original on 2012-12-12. Retrieved 2008-11-17.
  • ^ "Triple Sugar Iron (TSI) - Test Principle, Procedure, Result". 2022-09-10. Retrieved 2024-02-28.
  • ^ "Triple Sugar Iron Interpretation". Archived from the original on 2008-11-22. Retrieved 2008-11-17.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=TSI_slant&oldid=1232520294"
     



    Last edited on 4 July 2024, at 04:39  





    Languages

     


    العربية
    Deutsch
    Español
    Euskara
    Français
    Bahasa Indonesia
    Italiano

     

    Wikipedia


    This page was last edited on 4 July 2024, at 04:39 (UTC).

    Content is available under CC BY-SA 4.0 unless otherwise noted.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Terms of Use

    Desktop