Home  

Random  

Nearby  



Log in  



Settings  



Donate  



About Wikipedia  

Disclaimers  



Wikipedia





Wien's displacement law





Article  

Talk  



Language  

Watch  

Edit  





Inphysics, Wien's displacement law states that the black-body radiation curve for different temperatures will peak at different wavelengths that are inversely proportional to the temperature. The shift of that peak is a direct consequence of the Planck radiation law, which describes the spectral brightness or intensity of black-body radiation as a function of wavelength at any given temperature. However, it had been discovered by German physicist Wilhelm Wien several years before Max Planck developed that more general equation, and describes the entire shift of the spectrum of black-body radiation toward shorter wavelengths as temperature increases.

Black-body radiation as a function of wavelength for various temperatures. Each temperature curve peaks at a different wavelength and Wien's law describes the shift of that peak.
There are a variety of ways of associating a characteristic wavelength or frequency with the Planck black-body emission spectrum. Each of these metrics scales similarly with temperature, a principle referred to as Wien's displacement law. For different versions of the law, the proportionality constant differs—so, for a given temperature, there is no unique characteristic wavelength or frequency.

Formally, the wavelength version of Wien's displacement law states that the spectral radiance of black-body radiation per unit wavelength, peaks at the wavelength given by: where T is the absolute temperature and b is a constant of proportionality called Wien's displacement constant, equal to 2.897771955...×10−3 m⋅K,[1][2]orb ≈ 2898 μm⋅K.

This is an inverse relationship between wavelength and temperature. So the higher the temperature, the shorter or smaller the wavelength of the thermal radiation. The lower the temperature, the longer or larger the wavelength of the thermal radiation. For visible radiation, hot objects emit bluer light than cool objects. If one is considering the peak of black body emission per unit frequency or per proportional bandwidth, one must use a different proportionality constant. However, the form of the law remains the same: the peak wavelength is inversely proportional to temperature, and the peak frequency is directly proportional to temperature.

There are other formulations of Wien's displacement law, which are parameterized relative to other quantities. For these alternate formulations, the form of the relationship is similar, but the proportionality constant, b, differs.

Wien's displacement law may be referred to as "Wien's law", a term which is also used for the Wien approximation.

In "Wien's displacement law", the word displacement refers to how the intensity-wavelength graphs appear shifted (displaced) for different temperatures.

Examples

edit
 
Blacksmiths work iron when it is hot enough to emit plainly visible thermal radiation.
 
The color of a star is determined by its temperature, according to Wien's law. In the constellation of Orion, one can compare Betelgeuse (T ≈ 3300 K, upper left), Rigel (T = 12100 K, bottom right), Bellatrix (T = 22000 K, upper right), and Mintaka (T = 31800 K, rightmost of the 3 "belt stars" in the middle).

Wien's displacement law is relevant to some everyday experiences:

Discovery

edit

The law is named for Wilhelm Wien, who derived it in 1893 based on a thermodynamic argument.[5] Wien considered adiabatic expansion of a cavity containing waves of light in thermal equilibrium. Using Doppler's principle, he showed that, under slow expansion or contraction, the energy of light reflecting off the walls changes in exactly the same way as the frequency. A general principle of thermodynamics is that a thermal equilibrium state, when expanded very slowly, stays in thermal equilibrium.

Wien himself deduced this law theoretically in 1893, following Boltzmann's thermodynamic reasoning. It had previously been observed, at least semi-quantitatively, by an American astronomer, Langley. This upward shift in   with   is familiar to everyone—when an iron is heated in a fire, the first visible radiation (at around 900 K) is deep red, the lowest frequency visible light. Further increase in   causes the color to change to orange then yellow, and finally blue at very high temperatures (10,000 K or more) for which the peak in radiation intensity has moved beyond the visible into the ultraviolet.[6]

The adiabatic principle allowed Wien to conclude that for each mode, the adiabatic invariant energy/frequency is only a function of the other adiabatic invariant, the frequency/temperature. From this, he derived the "strong version" of Wien's displacement law: the statement that the blackbody spectral radiance is proportional to   for some function F of a single variable. A modern variant of Wien's derivation can be found in the textbook by Wannier[7] and in a paper by E. Buckingham[8]

The consequence is that the shape of the black-body radiation function (which was not yet understood) would shift proportionally in frequency (or inversely proportionally in wavelength) with temperature. When Max Planck later formulated the correct black-body radiation function it did not explicitly include Wien's constant  . Rather, the Planck constant   was created and introduced into his new formula. From the Planck constant   and the Boltzmann constant  , Wien's constant   can be obtained.

Peak differs according to parameterization

edit
Constants for different parameterizations of Wien's law
Parameterized by x  b (μm⋅K)
Wavelength,   4.965114231744276303... 2898
 or  3.920690394872886343... 3670
Frequency,   2.821439372122078893... 5099
Other characterizations of spectrum
Parameterized by x b (μm⋅K)
Mean photon energy 2.701... 5327
10% percentile 6.553... 2195
25% percentile 4.965... 2898
50% percentile 3.503... 4107
70% percentile 2.574... 5590
90% percentile 1.534... 9376

The results in the tables above summarize results from other sections of this article. Percentiles are percentiles of the Planck blackbody spectrum.[9] Only 25 percent of the energy in the black-body spectrum is associated with wavelengths shorter than the value given by the peak-wavelength version of Wien's law.

 
Planck blackbody spectrum parameterized by wavelength, fractional bandwidth (log wavelength or log frequency), and frequency, for a temperature of 6000 K.

Notice that for a given temperature, different parameterizations imply different maximal wavelengths. In particular, the curve of intensity per unit frequency peaks at a different wavelength than the curve of intensity per unit wavelength.[10]

For example, using   = 6,000 K (5,730 °C; 10,340 °F) and parameterization by wavelength, the wavelength for maximal spectral radiance is   = 482.962 nm with corresponding frequency   = 620.737 THz. For the same temperature, but parameterizing by frequency, the frequency for maximal spectral radiance is   = 352.735 THz with corresponding wavelength   = 849.907 nm.

These functions are radiance density functions, which are probability density functions scaled to give units of radiance. The density function has different shapes for different parameterizations, depending on relative stretching or compression of the abscissa, which measures the change in probability density relative to a linear change in a given parameter. Since wavelength and frequency have a reciprocal relation, they represent significantly non-linear shifts in probability density relative to one another.

The total radiance is the integral of the distribution over all positive values, and that is invariant for a given temperature under any parameterization. Additionally, for a given temperature the radiance consisting of all photons between two wavelengths must be the same regardless of which distribution you use. That is to say, integrating the wavelength distribution from  to  will result in the same value as integrating the frequency distribution between the two frequencies that correspond to   and  , namely from  to .[11] However, the distribution shape depends on the parameterization, and for a different parameterization the distribution will typically have a different peak density, as these calculations demonstrate.[10]

The important point of Wien's law, however, is that any such wavelength marker, including the median wavelength (or, alternatively, the wavelength below which any specified percentage of the emission occurs) is proportional to the reciprocal of temperature. That is, the shape of the distribution for a given parameterization scales with and translates according to temperature, and can be calculated once for a canonical temperature, then appropriately shifted and scaled to obtain the distribution for another temperature. This is a consequence of the strong statement of Wien's law.

Frequency-dependent formulation

edit

For spectral flux considered per unit frequency   (inhertz), Wien's displacement law describes a peak emission at the optical frequency   given by:[12]   or equivalently   where   = 2.821439372122078893...[13] is a constant resulting from the maximization equation, k is the Boltzmann constant, h is the Planck constant, and T is the absolute temperature. With the emission now considered per unit frequency, this peak now corresponds to a wavelength about 76% longer than the peak considered per unit wavelength. The relevant math is detailed in the next section.

Derivation from Planck's law

edit

Parameterization by wavelength

edit

Planck's law for the spectrum of black-body radiation predicts the Wien displacement law and may be used to numerically evaluate the constant relating temperature and the peak parameter value for any particular parameterization. Commonly a wavelength parameterization is used and in that case the black body spectral radiance (power per emitting area per solid angle) is:  

Differentiating   with respect to   and setting the derivative equal to zero gives:   which can be simplified to give:  

By defining:   the equation becomes one in the single variable x:   which is equivalent to:  

This equation is solved by   where   is the principal branch of the Lambert W function, and gives   4.965114231744276303....[14] Solving for the wavelength   in millimetres, and using kelvins for the temperature yields:[15][2]

 (2.897771955185172661... mm⋅K) .

Parameterization by frequency

edit

Another common parameterization is by frequency. The derivation yielding peak parameter value is similar, but starts with the form of Planck's law as a function of frequency  :  

The preceding process using this equation yields:   The net result is:   This is similarly solved with the Lambert W function:[16]   giving   = 2.821439372122078893....[13]

Solving for   produces:[12]

  (0.05878925757646824946... THz⋅K−1) .

Parameterization by the logarithm of wavelength or frequency

edit

Using the implicit equation   yields the peak in the spectral radiance density function expressed in the parameter radiance per proportional bandwidth. (That is, the density of irradiance per frequency bandwidth proportional to the frequency itself, which can be calculated by considering infinitesimal intervals of   (or equivalently  ) rather of frequency itself.) This is perhaps a more intuitive way of presenting "wavelength of peak emission". That yields   = 3.920690394872886343....[17]

Mean photon energy as an alternate characterization

edit

Another way of characterizing the radiance distribution is via the mean photon energy[10]   where   is the Riemann zeta function. The wavelength corresponding to the mean photon energy is given by  

Criticism

edit

Marr and Wilkin (2012) contend that the widespread teaching of Wien's displacement law in introductory courses is undesirable, and it would be better replaced by alternate material. They argue that teaching the law is problematic because:

  1. the Planck curve is too broad for the peak to stand out or be regarded as significant;
  2. the location of the peak depends on the parameterization, and they cite several sources as concurring that "that the designation of any peak of the function is not meaningful and should, therefore, be de-emphasized";
  3. the law is not used for determining temperatures in actual practice, direct use of the Planck function being relied upon instead.

They suggest that the average photon energy be presented in place of Wien's displacement law, as being a more physically meaningful indicator of changes that occur with changing temperature. In connection with this, they recommend that the average number of photons per second be discussed in connection with the Stefan–Boltzmann law. They recommend that the Planck spectrum be plotted as a "spectral energy density per fractional bandwidth distribution," using a logarithmic scale for the wavelength or frequency.[10]

See also

edit

References

edit
  1. ^ "2022 CODATA Value: Wien wavelength displacement law constant". The NIST Reference on Constants, Units, and Uncertainty. NIST. May 2024. Retrieved 18 May 2024.
  • ^ a b Sloane, N. J. A. (ed.). "Sequence A081819 (Decimal expansion of Wien wavelength displacement law constant)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  • ^ Walker, J. Fundamentals of Physics, 8th ed., John Wiley and Sons, 2008, p. 891. ISBN 9780471758013.
  • ^ Feynman, R; Leighton, R; Sands, M. The Feynman Lectures on Physics, vol. 1, pp. 35-2 – 35-3. ISBN 0201510030.
  • ^ Mehra, J.; Rechenberg, H. (1982). The Historical Development of Quantum Theory. New York City: Springer-Verlag. Chapter 1. ISBN 978-0-387-90642-3.
  • ^ "1.1: Blackbody Radiation Cannot be Explained Classically". 18 March 2020.
  • ^ Wannier, G. H. (1987) [1966]. Statistical Physics. Dover Publications. Chapter 10.2. ISBN 978-0-486-65401-0. OCLC 15520414.
  • ^ Buckingham, E. (1912). "On the Deduction of Wien's Displacement Law" (PDF). Bulletin of the Bureau of Standards. 8 (3): 545–557. doi:10.6028/bulletin.196. Archived from the original (PDF) on 6 December 2020. Retrieved 18 October 2020.
  • ^ Lowen, A. N.; Blanch, G. (1940). "Tables of Planck's radiation and photon functions". Journal of the Optical Society of America. 30 (2): 70. Bibcode:1940JOSA...30...70L. doi:10.1364/JOSA.30.000070.
  • ^ a b c d Marr, Jonathan M.; Wilkin, Francis P. (2012). "A Better Presentation of Planck's Radiation Law". American Journal of Physics. 80 (5): 399. arXiv:1109.3822. Bibcode:2012AmJPh..80..399M. doi:10.1119/1.3696974. S2CID 10556556.
  • ^ King, Frank (2003). "Probability 2003-04, Chapter 11, TRANSFORMING DENSITY FUNCTIONS". University of Cambridge.
  • ^ a b Sloane, N. J. A. (ed.). "Sequence A357838 (Decimal expansion of Wien frequency displacement law constant)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  • ^ a b Sloane, N. J. A. (ed.). "Sequence A194567". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  • ^ Sloane, N. J. A. (ed.). "Sequence A094090". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  • ^ Das, Biman (2002). "Obtaining Wien's displacement law from Planck's law of radiation". The Physics Teacher. 40 (3): 148–149. Bibcode:2002PhTea..40..148D. doi:10.1119/1.1466547.
  • ^ Williams, Brian Wesley (2014). "A Specific Mathematical Form for Wien's Displacement Law as νmax/T = constant". Journal of Chemical Education. 91 (5): 623. Bibcode:2014JChEd..91..623W. doi:10.1021/ed400827f.
  • ^ Sloane, N. J. A. (ed.). "Sequence A256501". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  • Further reading

    edit
    edit

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Wien%27s_displacement_law&oldid=1228015517"
     



    Last edited on 9 June 2024, at 01:09  





    Languages

     


    العربية
    Azərbaycanca

    Беларуская
    Català
    Čeština
    Dansk
    Deutsch
    Eesti
    Español
    Esperanto
    Euskara
    فارسی
    Français
    Gaeilge
    Galego

    Հայերեն
    ि
    Hrvatski
    Italiano
    עברית
    Кыргызча
    Magyar
    Македонски

    Nederlands

    Norsk bokmål
    Norsk nynorsk
    Polski
    Português
    Română
    Русский
    Slovenščina
    Српски / srpski
    Srpskohrvatski / српскохрватски
    Suomi
    Svenska
    ி
    Татарча / tatarça
    Türkçe
    Українська
    Tiếng Vit

     

    Wikipedia


    This page was last edited on 9 June 2024, at 01:09 (UTC).

    Content is available under CC BY-SA 4.0 unless otherwise noted.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Terms of Use

    Desktop