Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 D-Wave quantum computers  





2 Notes  














Adiabatic quantum computation






Català
Español
فارسی
Français
Русский

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




Print/export  



















Appearance
   

 






From Wikipedia, the free encyclopedia
 


This is an old revision of this page, as edited by Nikai (talk | contribs)at09:31, 14 January 2014 (D-Wave quantum computers: added title to citation). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
(diff)  Previous revision | Latest revision (diff) | Newer revision  (diff)

Adiabatic quantum computation (AQC) relies on the adiabatic theorem to do calculations[1] and is closely related to quantum annealing[2][3][4][5]. First, a complex Hamiltonian is found whose ground state describes the solution to the problem of interest. Next, a system with a simple Hamiltonian is prepared and initialized to the ground state. Finally, the simple Hamiltonian is adiabatically evolved to the complex Hamiltonian. By the adiabatic theorem, the system remains in the ground state, so at the end the state of the system describes the solution to the problem.

AQC is a possible method to get around the problem of energy relaxation. Since the quantum system is in the ground state, interference with the outside world cannot make it move to a lower state. If the energy of the outside world (that is, the "temperature of the bath") is kept lower than the energy gap between the ground state and the next higher energy state, the system has a proportionally lower probability of going to a higher energy state. Thus the system can stay in a single system eigenstate as long as needed.

Universality results in the adiabatic model are tied to quantum complexity and QMA-hard problems. The k-local Hamiltonian is QMA-complete for k ≥ 2.[6] QMA-hardness results are known for physically realistic lattice modelsofqubits such as [7] where represent the Pauli matrices . Such models are used for universal adiabatic quantum computation. The Hamiltonians for the QMA-complete problem can also be restricted to act on a two dimensional grid of qubits[8] or a line of quantum particles with 12 states per particle.[9] and if such models were found to be physically realisable, they too could be used to form the building blocks of a universal adiabatic quantum computer.

In practice, there are problems during a computation. As the Hamiltonian is gradually changed, the interesting parts (quantum behaviour as opposed to classical) occur when multiple qubits are close to a tipping point. It is exactly at this point when the ground state (one set of qubit orientations) gets very close to a first energy state (a different arrangement of orientations). Adding a slight amount of energy (from the external bath, or as a result of slowly changing the Hamiltonian) could take the system out of the ground state, and ruin the calculation. Trying to perform the calculation more quickly increases the external energy; scaling the number of qubits makes the energy gap at the tipping points smaller.

For a theoretical study of the performance of an adiabatic optimization processor see [10].

D-Wave quantum computers

The D-Wave One is an adiabatic quantum computer made by a Canadian company D-Wave Systems. In 2011, Lockheed-Martin purchased one for about US$10 million; in May 2013, Google purchased a D-Wave Two with 512 qubits.[11]

Notes

  1. ^ Edward Farhi, Jeffrey Goldstone, Sam Gutmann, Michael Sipser (2000). "Quantum Computation by Adiabatic Evolution". arXiv:quant-ph/0001106. {{cite arXiv}}: Unknown parameter |accessdate= ignored (help); Unknown parameter |version= ignored (help)CS1 maint: multiple names: authors list (link)
  • ^ T. Kadowaki and H. Nishimori, "Quantum annealing in the transverse Ising model" Phys. Rev. E 58, 5355 (1998)
  • ^ A. B. Finilla, M. A. Gomez, C. Sebenik and D. J. Doll, "Quantum annealing: A new method for minimizing multidimensional functions" Chem. Phys. Lett. 219, 343 (1994)
  • ^ G. E. Santoro and E. Tosatti, "Optimization using quantum mechanics: quantum annealing through adiabatic evolution" J. Phys. A 39, R393 (2006)
  • ^ A. Das and B. K. Chakrabarti, "Colloquium: Quantum annealing and analog quantum computation" Rev. Mod. Phys. 80, 1061 (2008)
  • ^ Kempe, Julia; Kitaev, Alexei; Regev, Oded (2006). "The Complexity of the Local Hamiltonian Problem". SIAM Journal on Computing. 35 (5). Philadelphia: Society for Industrial and Applied Mathematics: 1070–1097. arXiv:quant-ph/0406180v2. doi:10.1137/S0097539704445226. ISSN 1095-7111..
  • ^ Biamonte, Jacob; Love, Peter (2008). "Realizable Hamiltonians for Universal Adiabatic Quantum Computers". Phys. Rev. A. 78 (1). Physical Review: 012352. arXiv:arXiv:0704.1287. doi:10.1103/PhysRevA.78.012352. {{cite journal}}: Check |arxiv= value (help).
  • ^ Oliveira, Roberto (2008). "The complexity of quantum spin systems on a two-dimensional square lattice". pp. 0900–0924. arXiv:quant-ph/0504050. {{cite arXiv}}: |class= ignored (help); Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |journal= ignored (help); Unknown parameter |number= ignored (help); Unknown parameter |volume= ignored (help)
  • ^ Aharonov, Dorit (2009-04-01). "The Power of Quantum Systems on a Line". Communications in Mathematical Physics. 287 (1): 41–65. doi:10.1007/s00220-008-0710-3. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  • ^ Kamran Karimi, Neil .G. Dickson, Firas Hamze, et al., Investigating the Performance of an Adiabatic Quantum Optimization Processor, Quantum Information Processing, Volume 11, Number 1, 2012, http://arxiv.org/abs/1006.4147
  • ^ Jones, Nicola (19 June 2013). "Computing: The quantum company". Nature. Nature Publishing Group. pp. 286–288. Retrieved 2 January 2014.


  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Adiabatic_quantum_computation&oldid=590641249"

    Categories: 
    Quantum mechanics
    Physics theorems
    Hidden categories: 
    CS1 errors: unsupported parameter
    CS1 maint: multiple names: authors list
    CS1 errors: arXiv
    CS1 errors: class
     



    This page was last edited on 14 January 2014, at 09:31 (UTC).

    This version of the page has been revised. Besides normal editing, the reason for revision may have been that this version contains factual inaccuracies, vandalism, or material not compatible with the Creative Commons Attribution-ShareAlike License.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki