Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Materials  





2 Excess noise  





3 Performance limits  





4 History  





5 See also  





6 References  





7 Further reading  














Avalanche photodiode






Català
Čeština
Deutsch
Eesti
Español
فارسی

Italiano
Latviešu

Polski
Русский
Svenska
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




Print/export  



















Appearance
   

 






From Wikipedia, the free encyclopedia
 


This is an old revision of this page, as edited by Braden212 (talk | contribs)at12:57, 28 April 2019 ("azid-based" no such thing). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
(diff)  Previous revision | Latest revision (diff) | Newer revision  (diff)

Avalanche photodiode

Anavalanche photodiode (APD) is a highly sensitive semiconductor electronic device that exploits the photoelectric effect to convert light to electricity. APDs can be thought of as photodetectors that provide a built-in first stage of gain through avalanche multiplication. From a functional standpoint, they can be regarded as the semiconductor analog of photomultipliers. By applying a high reverse bias voltage (typically 100–200 V in silicon), APDs show an internal current gain effect (around 100) due to impact ionization (avalanche effect). However, some silicon APDs employ alternative doping and beveling techniques compared to traditional APDs that allow greater voltage to be applied (> 1500 V) before breakdown is reached and hence a greater operating gain (> 1000). In general, the higher the reverse voltage, the higher the gain. Among the various expressions for the APD multiplication factor (M), an instructive expression is given by the formula

where L is the space-charge boundary for electrons, and is the multiplication coefficient for electrons (and holes). This coefficient has a strong dependence on the applied electric field strength, temperature, and doping profile. Since APD gain varies strongly with the applied reverse bias and temperature, it is necessary to control the reverse voltage to keep a stable gain. Avalanche photodiodes therefore are more sensitive compared to other semiconductor photodiodes.

If very high gain is needed (105 to 106), certain APDs (single-photon avalanche diodes) can be operated with a reverse voltage above the APD's breakdown voltage. In this case, the APD needs to have its signal current limited and quickly diminished. Active and passive current-quenching techniques have been used for this purpose. APDs that operate in this high-gain regime are in Geiger mode. This mode is particularly useful for single-photon detection, provided that the dark count event rate and afterpulsing probability are sufficiently low.

Typical applications for APDs are laser rangefinders, long-range fiber-optic telecommunication, and quantum sensing for control algorithms. New applications include positron emission tomography and particle physics. APD arrays are becoming commercially available, also lightning detection and optical SETI may be a future application.

APD applicability and usefulness depends on many parameters. Two of the larger factors are: quantum efficiency, which indicates how well incident optical photons are absorbed and then used to generate primary charge carriers; and total leakage current, which is the sum of the dark current and photocurrent and noise. Electronic dark-noise components are series and parallel noise. Series noise, which is the effect of shot noise, is basically proportional to the APD capacitance, while the parallel noise is associated with the fluctuations of the APD bulk and surface dark currents. Another noise source is the excess noise factor, ENF. It is a multiplicative correction applied to the noise that describes the increase in the statistical noise, specifically Poisson noise, due to the multiplication process. The ENF is defined for any device, such as photomultiplier tubes, silicon solid-state photomultipliers, and APDs, that multiplies a signal, and is sometimes referred to as "gain noise".

The noise term for an APD may also contain a Fano factor, which is a multiplicative correction applied to the Poisson noise associated with the conversion of the energy deposited by a charged particle to the electron-hole pairs, which is the signal before multiplication. The correction factor describes the decrease in the noise, relative to Poisson statistics, due to the uniformity of conversion process and the absence of, or weak coupling to, bath states in the conversion process. In other words, an "ideal" semiconductor would convert the energy of the charged particle into an exact and reproducible number of electron hole pairs to conserve energy; in reality, however, the energy deposited by the charged particle is divided into the generation of electron hole pairs, the generation of sound, the generation of heat, and the generation of damage or displacement. The existence of these other channels introduces a stochastic process, where the amount of energy deposited into any single process varies from event to event, even if the amount of energy deposited is the same.

The underlying physics associated with the excess noise factor (gain noise) and the Fano factor (conversion noise) is very different. However, the application of these factors as multiplicative corrections to the expected Poisson noise is similar.

Materials

In principle, any semiconductor material can be used as a multiplication region:

Excess noise

Excess noise refers to the noise due to the multiplication process. At a gain M, it is denoted by ENF(M) and can often be expressed as

where is the ratio of the hole impact ionization rate to that of electrons. For an electron multiplication device it is given by the hole impact ionization rate divided by the electron impact ionization rate. It is desirable to have a large asymmetry between these rates to minimize ENF(M), since ENF(M) is one of the main factors that limit, among other things, the best possible energy resolution obtainable.

Performance limits

In addition to excess noise, there are limits to device performance associated with the capacitance, transit times and avalanche multiplication time.[1] The capacitance increases with increasing device area and decreasing thickness. The transit times (both electrons and holes) increase with increasing thickness, implying a tradeoff between capacitance and transit time for performance. The avalanche multiplication time times the gain is given to first order by the gain-bandwidth product, which is a function of the device structure and most especially .

History

The avalanche photodiode (APD) was invented by Japanese engineer Jun-ichi Nishizawa in 1952.[5] However study of avalanche breakdown, microplasma defects in Silicon and Germanium and the investigation of optical detection using p-n junctions predate this patent.

See also

References

  1. ^ a b c Tsang, W. T., ed. (1985). Semiconductors and Semimetals. Vol. Vol. 22, Part D "Photodetectors". Academic Press. {{cite book}}: |volume= has extra text (help)
  • ^ Tarof, L. E. (1991). "Planar InP/GaAs Avalanche Photodetector with Gain-Bandwidth Product in Excess of 100 GHz". Electronics Letters. 27: 34–36. doi:10.1049/el:19910023.
  • ^ Wu, W.; Hawkins, A. R.; Bowers, J. E. (1997). "Design of InGaAs/Si avalanche photodetectors for 400-GHz gain-bandwidth product". Proceedings of SPIE. Optoelectronic Integrated Circuits. 3006: 36–47. Bibcode:1997SPIE.3006...38W. doi:10.1117/12.264251.
  • ^ Campbell, J. C. (2007). "Recent advances in Telecommunications Avalanche Photodiodes". IEEE Journal of Lightwave Technology. 25 (1): 109–121. Bibcode:2007JLwT...25..109C. doi:10.1109/JLT.2006.888481.
  • ^ http://jqrmag.com/en/jqr-interview-eng/jun-ichi-nishizawa-engineer-sophia-university-special-professor/
  • Further reading


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Avalanche_photodiode&oldid=894526807"

    Categories: 
    Optical devices
    Optical diodes
    Particle detectors
    Photodetectors
    Japanese inventions
    Hidden categories: 
    CS1 errors: extra text: volume
    CS1: long volume value
    Wikipedia introduction cleanup from May 2018
    All pages needing cleanup
    Articles covered by WikiProject Wikify from May 2018
    All articles covered by WikiProject Wikify
     



    This page was last edited on 28 April 2019, at 12:57 (UTC).

    This version of the page has been revised. Besides normal editing, the reason for revision may have been that this version contains factual inaccuracies, vandalism, or material not compatible with the Creative Commons Attribution-ShareAlike License.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki