Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Why Drosophila  





2 Structure of the fly connectome  



2.1  Adult brain  





2.2  Adult ventral nerve cord  





2.3  Larval brain  







3 Structure and behavior  





4 See also  





5 References  





6 Further reading  





7 External links  














Drosophila connectome







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




Print/export  



















Appearance
   

 






From Wikipedia, the free encyclopedia
 


This is an old revision of this page, as edited by BillO'Slatter (talk | contribs)at06:22, 20 July 2023 (What sex was this fruit fly ?). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
(diff)  Previous revision | Latest revision (diff) | Newer revision  (diff)

The Drosophila connectome is the complete list of connections between neurons (commonly referred to as the "connectome") in the Drosophila melanogaster (fruit fly) nervous system. The Drosophila connectome has been completed for the female adult brain,[1][unreliable source] the male nerve cord,[2][unreliable source] and the larval stage.[3] The female fruit fly brain contains 127,978 neurons (for the first adult neuronal wiring diagram), and 3,016 neurons for the larval brain.So the synapse count is available for adults and larvae, and for the larvae it's the much lower number of roughly 548,000. The connectome is the most complex full one yet mapped, before mapped for only three other simpler organisms, first the C. elegans. The connectomes have been obtained by the methods of neural circuit reconstruction; Many of the 76 compartments of the Drosophila brain had connectomes available before the publication of the full connectome.

Why Drosophila

Connectome research (connectomics) has a number of competing objectives. On the one hand, investigators prefer an organism small enough that the connectome can be obtained in a reasonable amount of time. This argues for a small creature. On the other hand, one of the main uses of a connectome is to relate structure and behavior, so an animal with a large behavioral repertoire is desirable. It's also very helpful to use an animal with a large existing community of experimentalists, and many available genetic tools. Drosophila looks very good on these counts:

Structure of the fly connectome

Adult brain

In 2023, the full connectome (for a female) was published: "we present the first neuronal wiring diagram of a whole adult brain, containing 5x10^7 chemical synapses between ~130,000 neurons reconstructed from a female Drosophila melanogaster. [..] The technologies and open ecosystem of the FlyWire Consortium set the stage for future large-scale connectome projects in other species."[1]Aprojectome, a map of projections between regions, can be derived from the connectome.

Before in 2011, a high-level connectome, at the level of brain compartments and interconnecting tracts of neurons, for the full fly brain was published.[6] A version of this is available online.[7]

Detailed circuit-level connectomes exist for the lamina[8][9] and a medulla[10] column, both in the visual system of the fruit fly, and the alpha lobe of the mushroom body.[11]

In May of 2017 a paper published in bioRxiv presented an electron microscopy image stack of the whole adult female brain at synaptic resolution. The volume is available for sparse tracing of selected circuits.[12][13]

In 2020, a dense connectome of half the central brain of Drosophila was released,[14][unreliable source] along with a web site that allows queries and exploration of this data.[15] The methods used in reconstruction and initial analysis of the connectome followed.[16]

Adult ventral nerve cord

In 2022, a group of scientists mapped the motor control circuits of the ventral nerve cord of a female fruit fly using electron microscopy.[17]

Larval brain

In 2023, Michael Winding et al. published a complete larval brain connectome.[18][3] This connectome was mapped by annotating the previously collected electron microscopy volume.[19] They found that the larval brain was composed of 3,016 neurons and 548,000 synapses. 93% of brain neurons had a homolog in the opposite hemisphere. Of the synapses, 66.6% were axo-dendritic, 25.8% were axo-axonic, 5.8% were dendro-dendritic, and 1.8% were dendro-axonic.

To study the connectome, they treated it as a directed graph with the neurons forming nodes and the synapses forming the edges. Using this representation, Winding et al found that the larval brain neurons could be clustered into 93 different types, based on connectivity alone. These types aligned with the known neural groups including sensory neurons (visual, olfactory, gustatory, thermal, etc), descending neurons, and ascending neurons.

The authors ordered these neuron types based on proximity to brain inputs vs brain outputs. Using this ordering, they could quantify the proportion of recurrent connections, as the set of connections going from neurons closer to outputs towards inputs. They found that 41% of all brain neurons formed a recurrent connection. The neuron types with the most recurrent connections were the dopaminergic neurons (57%), mushroom body feedback neurons (51%), mushroom body output neurons (45%), and convergence neurons (42%) (receiving input from mushroom body and lateral horn regions). These neurons, implicated in learning, memory, and action-selection, form a set of recurrent loops.

Structure and behavior

A natural question is whether the connectome will allow simulation of the fly's behavior. However, the connectome alone is not sufficient. Additional information needed includes gap junction varieties and locations, identities of neurotransmitters, receptor types and locations, neuromodulators and hormones (with sources and receptors), the role of glial cells, time evolution rules for synapses, and more.[20][21]

The fruit fly connectome has been used to identify an area of the fruit fly brain that is involved in odor detection and tracking. Flies choose a direction in turbulent conditions by combining information about the direction of air flow and the movement of odor packets. Based on the fly connectome, processing must occur in the “fan-shaped body” where wind-sensing neurons and olfactory direction-sensing neurons cross.[22][23]

See also

References

  1. ^ a b Dorkenwald S, Matsliah A, Sterling AR, Schlegel P, Yu SC, McKellar CE, et al. (June 2023). "Neuronal wiring diagram of an adult brain". bioRxiv. doi:10.1101/2023.06.27.546656. PMC 10327113. PMID 37425937.
  • ^ Takemura SY, Hayworth KJ, Huang GB, Januszewski M, Lu Z, Marin EC, et al. (2023). "A Connectome of the Male Drosophila Ventral Nerve Cord". bioRxiv. doi:10.1101/2023.06.05.543757. 2023-06.
  • ^ a b Winding M, Pedigo BD, Barnes CL, Patsolic HG, Park Y, Kazimiers T, et al. (March 2023). "The connectome of an insect brain". Science. 379 (6636): eadd9330. doi:10.1126/science.add9330. PMID 36893230.
  • ^ Alivisatos AP, Chun M, Church GM, Greenspan RJ, Roukes ML, Yuste R (June 2012). "The brain activity map project and the challenge of functional connectomics". Neuron. 74 (6): 970–974. doi:10.1016/j.neuron.2012.06.006. PMC 3597383. PMID 22726828.
  • ^ DeWeerdt S (July 2019). "How to map the brain". Nature. 571 (7766): S6–S8. Bibcode:2019Natur.571S...6D. doi:10.1038/d41586-019-02208-0. PMID 31341309.
  • ^ Chiang AS, Lin CY, Chuang CC, Chang HM, Hsieh CH, Yeh CW, et al. (January 2011). "Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution". Current Biology. 21 (1): 1–11. doi:10.1016/j.cub.2010.11.056. PMID 21129968. S2CID 17155338.
  • ^ "FlyCircuit - A Database of Drosophila Brain Neurons". National Center for High-Performance Computing (NCHC). Retrieved 30 Aug 2013.
  • ^ Meinertzhagen IA, O'Neil SD (March 1991). "Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster". The Journal of Comparative Neurology. 305 (2): 232–263. doi:10.1002/cne.903050206. PMID 1902848. S2CID 35301798.
  • ^ Rivera-Alba M, Vitaladevuni SN, Mishchenko Y, Lu Z, Takemura SY, Scheffer L, et al. (December 2011). "Wiring economy and volume exclusion determine neuronal placement in the Drosophila brain". Current Biology. 21 (23): 2000–2005. doi:10.1016/j.cub.2011.10.022. PMC 3244492. PMID 22119527.
  • ^ Takemura SY, Bharioke A, Lu Z, Nern A, Vitaladevuni S, Rivlin PK, et al. (August 2013). "A visual motion detection circuit suggested by Drosophila connectomics". Nature. 500 (7461): 175–181. Bibcode:2013Natur.500..175T. doi:10.1038/nature12450. PMC 3799980. PMID 23925240.
  • ^ Takemura SY, Aso Y, Hige T, Wong A, Lu Z, Xu CS, et al. (July 2017). "A connectome of a learning and memory center in the adult Drosophila brain". eLife. 6: e26975. doi:10.7554/eLife.26975. PMC 5550281. PMID 28718765.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  • ^ Yeager A (31 May 2017). "Entire Fruit Fly Brain Imaged with Electron Microscopy". The Scientist Magazine. Retrieved 2018-07-15.
  • ^ Zheng Z, Lauritzen JS, Perlman E, Robinson CG, Nichols M, Milkie D, et al. (July 2018). "A Complete Electron Microscopy Volume of the Brain of Adult Drosophila melanogaster". Cell. 174 (3): 730–743.e22. doi:10.1016/j.cell.2018.06.019. PMC 6063995. PMID 30033368.
  • ^ Xu CS, Januszewski M, Lu Z, Takemura SY, Hayworth KJ, Huang G, et al. (2020). "A connectome of the adult Drosophila central brain". bioRxiv 10.1101/2020.01.21.911859.
  • ^ "Analysis tools for connectomics". Howard Hughes Medical Institute (HHMI).
  • ^ Scheffer LK, Xu CS, Januszewski M, Lu Z, Takemura SY, Hayworth KJ, et al. (September 2020). "A connectome and analysis of the adult Drosophila central brain". eLife. 9. doi:10.7554/eLife.57443. PMC 7546738. PMID 32880371.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  • ^ Phelps JS, Hildebrand DG, Graham BJ, Kuan AT, Thomas LA, Nguyen TM, et al. (February 2021). "Reconstruction of motor control circuits in adult Drosophila using automated transmission electron microscopy". Cell. 184 (3): 759–774.e18. doi:10.1016/j.cell.2020.12.013. PMC 8312698. PMID 33400916.
  • ^ Leffer L. "First Complete Map of a Fly Brain Has Uncanny Similarities to AI Neural Networks". Gizmodo. Retrieved 10 March 2023.
  • ^ Ohyama T, Schneider-Mizell CM, Fetter RD, Aleman JV, Franconville R, Rivera-Alba M, et al. (April 2015). "A multilevel multimodal circuit enhances action selection in Drosophila". Nature. 520 (7549): 633–639. doi:10.1038/nature14297. PMID 25896325.
  • ^ "Columbia Workshop on Brain Circuits, Memory and Computation". Center for Neural Engineering and Computation. New York, NY: Columbia University. March 2019.
  • ^ Scheffer LK, Meinertzhagen IA (November 2021). "A connectome is not enough - what is still needed to understand the brain of Drosophila?". The Journal of Experimental Biology. 224 (21): jeb242740. doi:10.1242/jeb.242740. PMID 34695211.
  • ^ Mackenzie D (6 March 2023). "How animals follow their nose". Knowable Magazine. Annual Reviews. doi:10.1146/knowable-030623-4. Retrieved 13 March 2023.
  • ^ Matheson AM, Lanz AJ, Medina AM, Licata AM, Currier TA, Syed MH, Nagel KI (August 2022). "A neural circuit for wind-guided olfactory navigation". Nature Communications. 13 (1): 4613. doi:10.1038/s41467-022-32247-7. PMID 35941114.
  • Further reading

    External links


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Drosophila_connectome&oldid=1166232528"

    Categories: 
    Brain
    Emerging technologies
    Neural coding
    Neuroimaging
    Neuroinformatics
    Drosophila melanogaster
    Invertebrate nervous system
    Hidden categories: 
    CS1 maint: unflagged free DOI
    All articles lacking reliable references
    Articles lacking reliable references from July 2023
     



    This page was last edited on 20 July 2023, at 06:22 (UTC).

    This version of the page has been revised. Besides normal editing, the reason for revision may have been that this version contains factual inaccuracies, vandalism, or material not compatible with the Creative Commons Attribution-ShareAlike License.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki