Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Mechanisms  





2 Material susceptibility  



2.1  Steels  





2.2  Copper  





2.3  Vanadium, nickel, and titanium  







3 Fatigue  





4 Sources of hydrogen  





5 Prevention  





6 Testing  





7 Notable failures from hydrogen embrittlement  





8 See also  





9 References  





10 External links  














Hydrogen embrittlement: Difference between revisions






العربية
Català
Čeština
Deutsch
فارسی
Français

Italiano
Nederlands

Norsk bokmål
Polski
Português
Русский
Svenska
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




Print/export  







In other projects  



Wikimedia Commons
 
















Appearance
   

 





Help
 

From Wikipedia, the free encyclopedia
 


Browse history interactively
 Previous editNext edit 
Content deleted Content added
Changes to wording
Citation bot (talk | contribs)
4,999,705 edits
Add: bibcode, s2cid, jstor, authors 1-1. Removed proxy/dead URL that duplicated identifier. Removed access-date with no URL. Removed parameters. Some additions/deletions were parameter name changes. Upgrade ISBN10 to 13. | Use this bot. Report bugs. | Suggested by Abductive | #UCB_webform 848/3850
Line 4: Line 4:

{{Mechanical failure modes}}

{{Mechanical failure modes}}



'''Hydrogen embrittlement''' ('''HE'''), also known as '''hydrogen-assisted cracking''' or '''hydrogen-induced cracking''' ('''HIC'''), is a reduction in the [[ductility]] of a metal due to absorbed [[hydrogen]]. Hydrogen atoms are small and can [[Permeation|permeate]] through solid metals. Once absorbed, hydrogen lowers the [[Stress (mechanics)|stress]] required for cracks in the metal to initiate and propagate, resulting in embrittlement. Hydrogen embrittlement occurs most notably in [[steel]]s, as well as in [[iron]], [[nickel]], [[titanium]], [[cobalt]], and their alloys. [[Copper]], [[aluminium]], and [[stainless steel]]s are less susceptible to hydrogen embrittlement.<ref name=":0">{{Citation |last=Lynch |first=S. P. |title=2 - Hydrogen embrittlement (HE) phenomena and mechanisms |date=2011-01-01 |url=https://www.sciencedirect.com/science/article/pii/B978184569673350002X |work=Stress Corrosion Cracking |pages=90–130 |editor-last=Raja |editor-first=V. S. |series=Woodhead Publishing Series in Metals and Surface Engineering |publisher=Woodhead Publishing |language=en |isbn=978-1-84569-673-3 |access-date=2022-06-10 |editor2-last=Shoji |editor2-first=Tetsuo}}</ref><ref name="nasa" /><ref>{{Cite journal |last=Jewett |first=R. P. |last2=Walter |first2=R. J. |last3=Chandler |first3=W. T. |last4=Frohmberg |first4=R. P. |date=1973-03-01 |title=Hydrogen environment embrittlement of metals |url=https://ntrs.nasa.gov/citations/19730012717 |language=en}}</ref><ref>{{Cite book |url=https://www.energy.gov/sites/prod/files/2014/03/f11/871916.pdf |title=Safety Standard for Hydrogen and Hydrogen Systems: Guidelines for Hydrogen System Design, Materials Selection, Operations, Storage, and Transportation |date=1997-10-29 |publisher=Office of Safety and Mission Assurance, National Aeronautics and Space Administration. |volume=NSS 1740.16 |location=Washington, DC |page=A-93 |language=en |format=PDF |access-date=2022-06-27}}</ref>

'''Hydrogen embrittlement''' ('''HE'''), also known as '''hydrogen-assisted cracking''' or '''hydrogen-induced cracking''' ('''HIC'''), is a reduction in the [[ductility]] of a metal due to absorbed [[hydrogen]]. Hydrogen atoms are small and can [[Permeation|permeate]] through solid metals. Once absorbed, hydrogen lowers the [[Stress (mechanics)|stress]] required for cracks in the metal to initiate and propagate, resulting in embrittlement. Hydrogen embrittlement occurs most notably in [[steel]]s, as well as in [[iron]], [[nickel]], [[titanium]], [[cobalt]], and their alloys. [[Copper]], [[aluminium]], and [[stainless steel]]s are less susceptible to hydrogen embrittlement.<ref name=":0">{{Citation |last=Lynch |first=S. P. |title=2 - Hydrogen embrittlement (HE) phenomena and mechanisms |date=2011-01-01 |url=https://www.sciencedirect.com/science/article/pii/B978184569673350002X |work=Stress Corrosion Cracking |pages=90–130 |editor-last=Raja |editor-first=V. S. |series=Woodhead Publishing Series in Metals and Surface Engineering |publisher=Woodhead Publishing |language=en |isbn=978-1-84569-673-3 |access-date=2022-06-10 |editor2-last=Shoji |editor2-first=Tetsuo}}</ref><ref name="nasa" /><ref>{{Cite journal |last1=Jewett |first1=R. P. |last2=Walter |first2=R. J. |last3=Chandler |first3=W. T. |last4=Frohmberg |first4=R. P. |date=1973-03-01 |title=Hydrogen environment embrittlement of metals |url=https://ntrs.nasa.gov/citations/19730012717 |language=en}}</ref><ref>{{Cite book |url=https://www.energy.gov/sites/prod/files/2014/03/f11/871916.pdf |title=Safety Standard for Hydrogen and Hydrogen Systems: Guidelines for Hydrogen System Design, Materials Selection, Operations, Storage, and Transportation |date=1997-10-29 |publisher=Office of Safety and Mission Assurance, National Aeronautics and Space Administration. |volume=NSS 1740.16 |location=Washington, DC |page=A-93 |language=en |access-date=2022-06-27}}</ref>



The essential facts about the nature of hydrogen embrittlement have been known since the 19th century.<ref name="Johnson_1875">{{cite journal |last1=Johnson |first1=William H. |date=31 December 1875 |title=II. On some remarkable changes produced in iron and steel by the action of hydrogen and acids |url=https://www.jstor.org/stable/pdf/113285.pdf |journal=Proceedings of the Royal Society of London |volume=23 |issue=156–163 |pages=168–179 |doi=10.1098/rspl.1874.0024 |issn=0370-1662 |eissn=2053-9126 |pmid=}}</ref><ref name="HarryB" />

The essential facts about the nature of hydrogen embrittlement have been known since the 19th century.<ref name="Johnson_1875">{{cite journal |last1=Johnson |first1=William H. |date=31 December 1875 |title=II. On some remarkable changes produced in iron and steel by the action of hydrogen and acids |url=https://www.jstor.org/stable/pdf/113285.pdf |journal=Proceedings of the Royal Society of London |volume=23 |issue=156–163 |pages=168–179 |doi=10.1098/rspl.1874.0024 |jstor=113285 |issn=0370-1662 |eissn=2053-9126 |pmid=|s2cid=97579399 }}</ref><ref name="HarryB" />

Hydrogen embrittlement is maximised at around [[room temperature]] in steels, and most metals are relatively immune to hydrogen embrittlement at temperatures above 150&nbsp;°C.<ref name="twi-he">{{cite web |title=What is hydrogen embrittlement? – Causes, effects and prevention |url=https://www.twi-global.com/technical-knowledge/faqs/what-is-hydrogen-embrittlement |website=TWI - The Welding Institute |publisher=TWI - The Welding Institute |access-date=18 December 2020}}</ref> Hydrogen embrittlement requires the presence of a [[Stress (mechanics)|mechanical stress]] to induce crack growth, although that stress may be applied or [[Residual stress|residual]].<ref name="nasa" /><ref>{{Cite journal |last=Oriani |first=R A |date=August 1978 |title=Hydrogen Embrittlement of Steels |url=https://www.annualreviews.org/doi/10.1146/annurev.ms.08.080178.001551 |journal=Annual Review of Materials Science |language=en |volume=8 |issue=1 |pages=327–357 |doi=10.1146/annurev.ms.08.080178.001551 |issn=0084-6600}}</ref><ref name="dummies">{{cite web |title=Hydrogen Embrittlement |url=https://www.metallurgyfordummies.com/hydrogen-embrittlement.html |website=Metallurgy for Dummies |access-date=18 December 2020}}</ref> Hydrogen embrittlement increases at lower [[strain rate]]s.<ref name=":0" /><ref name="nasa" /><ref name=":1">{{Cite journal |last=Louthan |first=M. R. |date=2008-06-01 |title=Hydrogen Embrittlement of Metals: A Primer for the Failure Analyst |url=https://doi.org/10.1007/s11668-008-9133-x |journal=Journal of Failure Analysis and Prevention |language=en |volume=8 |issue=3 |pages=289–307 |doi=10.1007/s11668-008-9133-x |issn=1864-1245}}</ref> In general, [[High-strength low-alloy steel|higher-strength materials]] are more susceptible to hydrogen embrittlement.

Hydrogen embrittlement is maximised at around [[room temperature]] in steels, and most metals are relatively immune to hydrogen embrittlement at temperatures above 150&nbsp;°C.<ref name="twi-he">{{cite web |title=What is hydrogen embrittlement? – Causes, effects and prevention |url=https://www.twi-global.com/technical-knowledge/faqs/what-is-hydrogen-embrittlement |website=TWI - The Welding Institute |publisher=TWI - The Welding Institute |access-date=18 December 2020}}</ref> Hydrogen embrittlement requires the presence of a [[Stress (mechanics)|mechanical stress]] to induce crack growth, although that stress may be applied or [[Residual stress|residual]].<ref name="nasa" /><ref>{{Cite journal |last=Oriani |first=R A |date=August 1978 |title=Hydrogen Embrittlement of Steels |url=https://www.annualreviews.org/doi/10.1146/annurev.ms.08.080178.001551 |journal=Annual Review of Materials Science |language=en |volume=8 |issue=1 |pages=327–357 |doi=10.1146/annurev.ms.08.080178.001551 |bibcode=1978AnRMS...8..327O |issn=0084-6600}}</ref><ref name="dummies">{{cite web |title=Hydrogen Embrittlement |url=https://www.metallurgyfordummies.com/hydrogen-embrittlement.html |website=Metallurgy for Dummies |access-date=18 December 2020}}</ref> Hydrogen embrittlement increases at lower [[strain rate]]s.<ref name=":0" /><ref name="nasa" /><ref name=":1">{{Cite journal |last=Louthan |first=M. R. |date=2008-06-01 |title=Hydrogen Embrittlement of Metals: A Primer for the Failure Analyst |url=https://doi.org/10.1007/s11668-008-9133-x |journal=Journal of Failure Analysis and Prevention |language=en |volume=8 |issue=3 |pages=289–307 |doi=10.1007/s11668-008-9133-x |s2cid=51738408 |issn=1864-1245}}</ref> In general, [[High-strength low-alloy steel|higher-strength materials]] are more susceptible to hydrogen embrittlement.



Metals can be exposed to hydrogen from two types of sources: gaseous hydrogen and hydrogen chemically generated at the metal surface. Gaseous hydrogen is found in [[pressure vessel]]s and [[Hydrogen pipeline transport|pipelines]]. [[Electrochemistry|Electrochemical]] sources of hydrogen include [[acid]]s (as may be encountered during [[Pickling (metal)|pickling]], [[Chemical milling|etching]], or cleaning), [[corrosion]] (typically due to [[Corrosion|aqueous corrosion]] or [[cathodic protection]]), and [[electroplating]].<ref name=":0" /><ref name="nasa" /> Hydrogen can be introduced into the metal during manufacturing by the presence of moisture during [[welding]] or while the metal is [[Melting|molten]]. The most common causes of failure in practice are poorly-controlled electroplating or damp [[welding rods]].

Metals can be exposed to hydrogen from two types of sources: gaseous hydrogen and hydrogen chemically generated at the metal surface. Gaseous hydrogen is found in [[pressure vessel]]s and [[Hydrogen pipeline transport|pipelines]]. [[Electrochemistry|Electrochemical]] sources of hydrogen include [[acid]]s (as may be encountered during [[Pickling (metal)|pickling]], [[Chemical milling|etching]], or cleaning), [[corrosion]] (typically due to [[Corrosion|aqueous corrosion]] or [[cathodic protection]]), and [[electroplating]].<ref name=":0" /><ref name="nasa" /> Hydrogen can be introduced into the metal during manufacturing by the presence of moisture during [[welding]] or while the metal is [[Melting|molten]]. The most common causes of failure in practice are poorly-controlled electroplating or damp [[welding rods]].

Line 18: Line 18:


* Internal pressure: At high hydrogen concentrations, absorbed hydrogen species recombine in voids to form hydrogen molecules (H<sub>2</sub>), creating pressure from within the metal. This pressure can increase to levels where cracks form, commonly designated hydrogen-induced cracking (HIC), as well as [[blister]]s forming on the specimen surface, designated hydrogen-induced blistering. These effects can reduce [[ductility]] and [[Ultimate tensile strength|tensile strength]].<ref name="vergani">{{cite journal |last1=Vergani |first1=Laura |last2=Colombo |first2=Chiara |display-authors=etal |date=2014 |title=Hydrogen effect on fatigue behavior of a quenched and tempered steel |journal=Procedia Engineering |volume=74 |issue=XVII International Colloquium on Mechanical Fatigue of Metals (ICMFM17) |pages=468–71 |doi=10.1016/j.proeng.2014.06.299 |doi-access=free }}</ref>

* Internal pressure: At high hydrogen concentrations, absorbed hydrogen species recombine in voids to form hydrogen molecules (H<sub>2</sub>), creating pressure from within the metal. This pressure can increase to levels where cracks form, commonly designated hydrogen-induced cracking (HIC), as well as [[blister]]s forming on the specimen surface, designated hydrogen-induced blistering. These effects can reduce [[ductility]] and [[Ultimate tensile strength|tensile strength]].<ref name="vergani">{{cite journal |last1=Vergani |first1=Laura |last2=Colombo |first2=Chiara |display-authors=etal |date=2014 |title=Hydrogen effect on fatigue behavior of a quenched and tempered steel |journal=Procedia Engineering |volume=74 |issue=XVII International Colloquium on Mechanical Fatigue of Metals (ICMFM17) |pages=468–71 |doi=10.1016/j.proeng.2014.06.299 |doi-access=free }}</ref>

* Hydrogen enhanced localised [[Plasticity (physics)|plasticity]] (HELP): Hydrogen increases the [[nucleation]] and [[Dislocation creep|movement]] of [[dislocation]]s at a crack tip. HELP results in crack propagation by localised [[ductile failure]] at the crack tip with less [[Deformation (engineering)|deformation]] occurring in the surrounding material, which gives a [[Brittleness|brittle]] appearance to the [[fracture]].<ref name="HELP">{{cite journal |last1=Haiyang Yu |title=Discrete dislocation plasticity HELPs understand hydrogen effects in bcc materials |journal=Journal of the Mechanics and Physics of Solids |date=February 2009 |volume=123 |pages=41–60 |doi=10.1016/j.jmps.2018.08.020 |s2cid=56081700 |url=https://www.sciencedirect.com/science/article/pii/S002250961830574X#bib0005 |access-date=18 December 2020|doi-access=free }}</ref><ref name="Barnoush" />

* Hydrogen enhanced localised [[Plasticity (physics)|plasticity]] (HELP): Hydrogen increases the [[nucleation]] and [[Dislocation creep|movement]] of [[dislocation]]s at a crack tip. HELP results in crack propagation by localised [[ductile failure]] at the crack tip with less [[Deformation (engineering)|deformation]] occurring in the surrounding material, which gives a [[Brittleness|brittle]] appearance to the [[fracture]].<ref name="HELP">{{cite journal |last1=Haiyang Yu |title=Discrete dislocation plasticity HELPs understand hydrogen effects in bcc materials |journal=Journal of the Mechanics and Physics of Solids |date=February 2009 |volume=123 |pages=41–60 |doi=10.1016/j.jmps.2018.08.020 |s2cid=56081700 |doi-access=free }}</ref><ref name="Barnoush" />

* Hydrogen decreased dislocation emission: [[Molecular dynamics]] simulations reveal a [[ductile-to-brittle transition]] caused by the suppression of dislocation emission at the crack tip by dissolved hydrogen. This prevents the crack tip rounding-off, so the sharp crack then leads to brittle-cleavage failure.<ref name="song">{{cite journal |last1=Song |first1=Jun |title=Atomic mechanism and prediction of hydrogen embrittlement in iro |journal=Nature Materials |date=11 November 2012 |volume=12 |issue=2 |pages=145–151 |doi=10.1038/nmat3479 |pmid=23142843 |url=https://www.nature.com/articles/nmat3479 |access-date=22 December 2020}}</ref>

* Hydrogen decreased dislocation emission: [[Molecular dynamics]] simulations reveal a [[ductile-to-brittle transition]] caused by the suppression of dislocation emission at the crack tip by dissolved hydrogen. This prevents the crack tip rounding-off, so the sharp crack then leads to brittle-cleavage failure.<ref name="song">{{cite journal |last1=Song |first1=Jun |title=Atomic mechanism and prediction of hydrogen embrittlement in iro |journal=Nature Materials |date=11 November 2012 |volume=12 |issue=2 |pages=145–151 |doi=10.1038/nmat3479 |pmid=23142843 |url=https://www.nature.com/articles/nmat3479 |access-date=22 December 2020}}</ref>

* Hydrogen enhanced decohesion (HEDE): Interstitial hydrogen lowers the stress required for metal atoms to fracture apart. HEDE can only occur when the local concentration of hydrogen is high, such as due to the increased hydrogen [[solubility]] in the [[tensile stress]] field at a crack tip, at stress concentrators, or in the tension field of [[Edge dislocation|edge dislocations]].<ref name="Barnoush" />

* Hydrogen enhanced decohesion (HEDE): Interstitial hydrogen lowers the stress required for metal atoms to fracture apart. HEDE can only occur when the local concentration of hydrogen is high, such as due to the increased hydrogen [[solubility]] in the [[tensile stress]] field at a crack tip, at stress concentrators, or in the tension field of [[Edge dislocation|edge dislocations]].<ref name="Barnoush" />


Revision as of 01:12, 2 August 2022

Hydrogen-induced cracking (HIC)

Hydrogen embrittlement (HE), also known as hydrogen-assisted crackingorhydrogen-induced cracking (HIC), is a reduction in the ductility of a metal due to absorbed hydrogen. Hydrogen atoms are small and can permeate through solid metals. Once absorbed, hydrogen lowers the stress required for cracks in the metal to initiate and propagate, resulting in embrittlement. Hydrogen embrittlement occurs most notably in steels, as well as in iron, nickel, titanium, cobalt, and their alloys. Copper, aluminium, and stainless steels are less susceptible to hydrogen embrittlement.[1][2][3][4]

The essential facts about the nature of hydrogen embrittlement have been known since the 19th century.[5][6] Hydrogen embrittlement is maximised at around room temperature in steels, and most metals are relatively immune to hydrogen embrittlement at temperatures above 150 °C.[7] Hydrogen embrittlement requires the presence of a mechanical stress to induce crack growth, although that stress may be applied or residual.[2][8][9] Hydrogen embrittlement increases at lower strain rates.[1][2][10] In general, higher-strength materials are more susceptible to hydrogen embrittlement.

Metals can be exposed to hydrogen from two types of sources: gaseous hydrogen and hydrogen chemically generated at the metal surface. Gaseous hydrogen is found in pressure vessels and pipelines. Electrochemical sources of hydrogen include acids (as may be encountered during pickling, etching, or cleaning), corrosion (typically due to aqueous corrosionorcathodic protection), and electroplating.[1][2] Hydrogen can be introduced into the metal during manufacturing by the presence of moisture during welding or while the metal is molten. The most common causes of failure in practice are poorly-controlled electroplating or damp welding rods.

Hydrogen embrittlement as a term can be used to refer specifically to the embrittlement that occurs in steels and similar metals at relatively low hydrogen concentrations, or it can be used to encompass all embrittling effects that hydrogen has on metals. These broader embrittling effects include hydride formation, which occurs in titanium and vanadium but not in steels, and hydrogen-induced blistering, which only occurs at high hydrogen concentrations and does not require the presence of stress.[10] However, hydrogen embrittlement is almost always distinguished from high temperature hydrogen attack (HTHA), which occurs in steels at temperatures above 400 °C and involves the formation of methane pockets.[11] The mechanism by which hydrogen causes embrittlement in steels is not fully understood and continues to be debated.[1][12][13]

Mechanisms

Crack in a hardened steel due to hydrogen, observed by scanning electron microscopy (SEM).

Hydrogen embrittlement is a complex process involving a number of distinct contributing micro-mechanisms, not all of which need to be present. The mechanisms include the formation of brittle hydrides, the creation of voids that can lead to high-pressure bubbles, enhanced decohesion at internal surfaces and localised plasticity at crack tips that assist in the propagation of cracks.[13] There is a great variety of mechanisms that have been proposed[13] and investigated as to the cause of brittleness once diffusible hydrogen has been dissolved into the metal.[6] In recent years, it has become widely accepted that HE is a complex, material and environmental dependent process, so that no single mechanism applies exclusively.[14]

Material susceptibility

Hydrogen embrittles a variety of metals including steel,[18][19] aluminium (at high temperatures only[20]), and titanium.[21] Austempered iron is also susceptible, though austempered steel (and possibly other austempered metals) displays increased resistance to hydrogen embrittlement.[22] NASA has reviewed which metals are susceptible to embrittlement and which only prone to hot hydrogen attack: nickel alloys, austenitic stainless steels, aluminium and alloys, copper (including alloys, e.g. beryllium copper).[2] Sandia has also produced a comprehensive guide.[23]

Steels

Steels were embrittled with hydrogen through cathodic charging. Heat treatment (baking) was used to reduce hydrogen content. Lower bake times resulted in quicker fracture times due to higher hydrogen content.[24]

Steel with an ultimate tensile strength of less than 1000 MPa (~145,000 psi) or hardness of less than HRC 32 on the Hardness Rockwell Scale is not generally considered susceptible to hydrogen embrittlement. As an example of severe hydrogen embrittlement, the elongation at failure of 17-4PH precipitation hardened stainless steel was measured to drop from 17% to only 1.7% when smooth specimens were exposed to high-pressure hydrogen.[citation needed]

As the strength of steels increases, the fracture toughness decreases, so the likelihood that hydrogen embrittlement will lead to fracture increases. In high-strength steels, anything above a hardness of HRC 32 may be susceptible to early hydrogen cracking after plating processes that introduce hydrogen. They may also experience long-term failures anytime from weeks to decades after being placed in service due to accumulation of hydrogen over time from cathodic protection and other sources. Numerous failures have been reported in the hardness range from HRC 32-36 and more above; therefore, parts in this range should be checked during quality control to ensure they are not susceptible.

Copper

Copper alloys which contain oxygen can be embrittled if exposed to hot hydrogen. The hydrogen diffuses through the copper and reacts with inclusions of Cu
2
O
, forming 2 metallic Cu atoms and H2O (water), which then forms pressurized bubbles at the grain boundaries. This process can cause the grains to literally be forced away from each other, and is known as steam embrittlement (because steam is directly produced inside the copper crystal lattice, not because exposure of copper to external steam causes the problem).

Vanadium, nickel, and titanium

Alloysofvanadium, nickel, and titanium have a high hydrogen solubility, and can therefore absorb significant amounts of hydrogen. This can lead to hydride formation, resulting in irregular volume expansion and reduced ductility (because metallic hydrides are fragile ceramic materials). This is a particular issue when looking for non-palladium-based alloys for use in hydrogen separation membranes.[17]

Fatigue

While most failures in practice have been through fast failure, there is experimental evidence that hydrogen also affects the fatigue properties of steels. This is entirely expected given the nature of the embrittlement mechanisms proposed for fast fracture.[25][15] In general hydrogen embrittlement has a strong effect on high-stress, low-cycle fatigue and very little effect on high-cycle fatigue.[2][23]

Sources of hydrogen

During manufacture, hydrogen can be dissolved into the component by processes such as phosphating, pickling, electroplating, casting, carbonizing, surface cleaning, electrochemical machining, welding, hot roll forming, and heat treatments.

During service use, hydrogen can be dissolved into the metal from wet corrosion or through misapplication of protection measures such as cathodic protection.[2] In one case of failure during construction of the San Francisco–Oakland Bay Bridge galvanized (i.e. zinc-plated) rods were left wet for 5 years before being tensioned. The reaction of the zinc with water introduced hydrogen into the steel.[26][27][28]

A common case of embrittlement during manufacture is poor arc welding practice, in which hydrogen is released from moisture, such as in the coating of welding electrodes or from damp welding rods.[21][29] To avoid atomic hydrogen formation in the high temperature plasma of the arc, welding rods have to be perfectly dried in an oven at the appropriate temperature and time before to be used. Another way to minimize the formation of hydrogen is to use special low-hydrogen electrodes for welding high-strength steels.

Apart from arc welding, the most common problems are from chemical or electrochemical processes which, by reduction of hydrogen ions or water, generate hydrogen atoms at the surface, which rapidly dissolve in the metal. One of these chemical reactions involves hydrogen sulfide (H
2
S
) in sulfide stress cracking (SSC), a significant problem for the oil and gas industries.[30]

After a manufacturing process or treatment which may cause hydrogen ingress, the component should be baked to remove or immobilize the hydrogen.[27]

Prevention

Hydrogen embrittlement can be prevented through several methods, all of which are centered on minimizing contact between the metal and hydrogen, particularly during fabrication and the electrolysis of water. Embrittling procedures such as acid pickling should be avoided, as should increased contact with elements such as sulfur and phosphate. The use of proper electroplating solution and procedures can also help to prevent hydrogen embrittlement.

If the metal has not yet started to crack, hydrogen embrittlement can be reversed by removing the hydrogen source and causing the hydrogen within the metal to diffuse out through heat treatment. This de-embrittlement process, known as low hydrogen annealing or "baking", is used to overcome the weaknesses of methods such as electroplating which introduce hydrogen to the metal, but is not always entirely effective because a sufficient time and temperature must be reached.[31] Tests such as ASTM F1624 can be used to rapidly identify the minimum baking time (by testing using design of experiments, a relatively low number of samples can be used to pinpoint this value). Then the same test can be used as a quality control check to evaluate if baking was sufficient on a per-batch basis.

In the case of welding, often pre-heating and post-heating the metal is applied to allow the hydrogen to diffuse out before it can cause any damage. This is specifically done with high-strength steels and low alloy steels such as the chromium/molybdenum/vanadium alloys. Due to the time needed to re-combine hydrogen atoms into the hydrogen molecules, hydrogen cracking due to welding can occur over 24 hours after the welding operation is completed.

Another way of preventing this problem is through materials selection. This will build an inherent resistance to this process and reduce the need of post processing or constant monitoring for failure. Certain metals or alloys are highly susceptible to this issue, so choosing a material that is minimally affected while retaining the desired properties would also provide an optimal solution. Much research has been done to catalog the compatibility of certain metals with hydrogen.[23] Tests such as ASTM F1624 can also be used to rank alloys and coatings during materials selection to ensure (for instance) that the threshold of cracking is below the threshold for hydrogen-assisted stress corrosion cracking. Similar tests can also be used during quality control to more effectively qualify materials being produced in a rapid and comparable manner.

Testing

Most analytical methods for hydrogen embrittlement involve evaluating the effects of (1) internal hydrogen from production and/or (2) external sources of hydrogen such as cathodic protection. For steels, it is important to test specimens in the lab that are at least as hard (or harder) than the final parts will be. Ideally, specimens should be made of the final material or the nearest possible representative, as fabrication can have a profound impact on resistance to hydrogen-assisted cracking.

There are numerous ASTM standards for testing for hydrogen embrittlement:

There are many other related standards for hydrogen embrittlement:

Notable failures from hydrogen embrittlement

See also

  • Hydrogen damage
  • Hydrogen piping
  • Hydrogen safety
  • Low hydrogen annealing
  • Nascent hydrogen
  • Oxygen-free copper
  • Stress corrosion cracking
  • References

    1. ^ a b c d Lynch, S. P. (2011-01-01), Raja, V. S.; Shoji, Tetsuo (eds.), "2 - Hydrogen embrittlement (HE) phenomena and mechanisms", Stress Corrosion Cracking, Woodhead Publishing Series in Metals and Surface Engineering, Woodhead Publishing, pp. 90–130, ISBN 978-1-84569-673-3, retrieved 2022-06-10
  • ^ a b c d e f g NASA (2016). "Hydrogen Embrittlement" (PDF). Retrieved 18 December 2020. {{cite journal}}: Cite journal requires |journal= (help)
  • ^ Jewett, R. P.; Walter, R. J.; Chandler, W. T.; Frohmberg, R. P. (1973-03-01). "Hydrogen environment embrittlement of metals". {{cite journal}}: Cite journal requires |journal= (help)
  • ^ Safety Standard for Hydrogen and Hydrogen Systems: Guidelines for Hydrogen System Design, Materials Selection, Operations, Storage, and Transportation (PDF). Vol. NSS 1740.16. Washington, DC: Office of Safety and Mission Assurance, National Aeronautics and Space Administration. 1997-10-29. p. A-93. Retrieved 2022-06-27.
  • ^ Johnson, William H. (31 December 1875). "II. On some remarkable changes produced in iron and steel by the action of hydrogen and acids" (PDF). Proceedings of the Royal Society of London. 23 (156–163): 168–179. doi:10.1098/rspl.1874.0024. eISSN 2053-9126. ISSN 0370-1662. JSTOR 113285. S2CID 97579399.
  • ^ a b Bhadhesia, Harry. "Prevention of Hydrogen Embrittlement in Steels" (PDF). Phase Transformations & Complex Properties Research Group, Cambridge University. Retrieved 17 December 2020.
  • ^ "What is hydrogen embrittlement? – Causes, effects and prevention". TWI - The Welding Institute. TWI - The Welding Institute. Retrieved 18 December 2020.
  • ^ Oriani, R A (August 1978). "Hydrogen Embrittlement of Steels". Annual Review of Materials Science. 8 (1): 327–357. Bibcode:1978AnRMS...8..327O. doi:10.1146/annurev.ms.08.080178.001551. ISSN 0084-6600.
  • ^ "Hydrogen Embrittlement". Metallurgy for Dummies. Retrieved 18 December 2020.
  • ^ a b Louthan, M. R. (2008-06-01). "Hydrogen Embrittlement of Metals: A Primer for the Failure Analyst". Journal of Failure Analysis and Prevention. 8 (3): 289–307. doi:10.1007/s11668-008-9133-x. ISSN 1864-1245. S2CID 51738408.
  • ^ TWI – The Welding Institute. "What is high temperature hydrogen attack (HTHA) / hot hydrogen attack?". TWI - The Welding Institute. Retrieved 16 December 2020.
  • ^ a b c Barnoush, Afrooz. "Hydrogen embrittlement revisited by in situ electrochemical nanoindentations" (PDF). Archived from the original (PDF) on 2011-05-18. Retrieved 18 December 2020.
  • ^ a b c Robertson, Ian M.; Sofronis, P.; Nagao, A.; Martin, M. L.; Wang, S.; Gross, D. W.; Nygren, K. E. (2015). "Hydrogen Embrittlement Understood". Metallurgical and Materials Transactions A. 46A (6): 2323–2341. Bibcode:2015MMTA...46.2323R. doi:10.1007/s11661-015-2836-1. S2CID 136682331.
  • ^ a b Haiyang Yu (February 2009). "Discrete dislocation plasticity HELPs understand hydrogen effects in bcc materials". Journal of the Mechanics and Physics of Solids. 123: 41–60. doi:10.1016/j.jmps.2018.08.020. S2CID 56081700.
  • ^ a b Vergani, Laura; Colombo, Chiara; et al. (2014). "Hydrogen effect on fatigue behavior of a quenched and tempered steel". Procedia Engineering. 74 (XVII International Colloquium on Mechanical Fatigue of Metals (ICMFM17)): 468–71. doi:10.1016/j.proeng.2014.06.299.
  • ^ Song, Jun (11 November 2012). "Atomic mechanism and prediction of hydrogen embrittlement in iro". Nature Materials. 12 (2): 145–151. doi:10.1038/nmat3479. PMID 23142843. Retrieved 22 December 2020.
  • ^ a b Dolan, Michael D.; Kochanek, Mark A.; Munnings, Christopher N.; McLennan, Keith G.; Viano, David M. (February 2015). "Hydride phase equilibria in V–Ti–Ni alloy membranes". Journal of Alloys and Compounds. 622: 276–281. doi:10.1016/j.jallcom.2014.10.081.
  • ^ Djukic, M.B.; et al. (2014). "Hydrogen embrittlement of low carbon structural steel". Procedia Materials Science. 3 (20th European Conference on Fracture): 1167–1172. doi:10.1016/j.mspro.2014.06.190.
  • ^ Djukic, M.B.; et al. (2015). "Hydrogen damage of steels: A case study and hydrogen embrittlement model". Engineering Failure Analysis. 58 (Recent case studies in Engineering Failure Analysis): 485–498. doi:10.1016/j.engfailanal.2015.05.017.
  • ^ Ambat, Rajan; Dwarakadasa (February 1996). "Effect of Hydrogen in aluminium and aluminium alloys: A review". Bulletin of Materials Science. 19 (1): 103–114. doi:10.1007/BF02744792.
  • ^ a b Eberhart, Mark (2003). Why Things Break. New York: Harmony Books. p. 65. ISBN 978-1-4000-4760-4.
  • ^ Tartaglia, John; Lazzari, Kristen; et al. (March 2008). "A Comparison of Mechanical Properties and Hydrogen Embrittlement Resistance of Austempered vs Quenched and Tempered 4340 Steel". Metallurgical and Materials Transactions A. 39 (3): 559–76. Bibcode:2008MMTA...39..559T. doi:10.1007/s11661-007-9451-8. ISSN 1073-5623. S2CID 136866718.
  • ^ a b c Marchi, C. San (2012). "Technical Reference for Hydrogen Compatibility of Materials" (PDF).
  • ^ Morlet, J. G. (1958). "A new concept in hydrogen embrittlement in steels". The Journal of the Iron and Steel Institute. 189: 37.
  • ^ Fernandez-Sousa, Rebeca (2020). "Analysis of the influence of microstructural traps on hydrogen assisted fatigue". Acta Materialia. 199: 253. arXiv:2008.05452. Bibcode:2020AcMat.199..253F. doi:10.1016/j.actamat.2020.08.030. S2CID 221103811.
  • ^ a b Francis, Rob. "A Failure Analysis of Hydrogen Embrittlement in Bridge Fasteners". Corrosionpedia. Corrosionpedia. Retrieved 18 December 2020.
  • ^ a b Ferraz, M. Teresa; Oliveira, Manuela (2008). "Steel fasteners failure by hydrogen embrittlement" (PDF). Ciência e Tecnologia dos Materiais. 20 (1/2): 128–133. Retrieved 18 December 2020.
  • ^ a b Yun Chung (2 December 2014). "Validity of Caltrans' Environmental Hydrogen Embrittlement Test on Grade BD Anchor Rods in the SAS Span" (PDF).
  • ^ Weman, Klas (2011). Welding Processes Handbook. Elsevier. p. 115. ISBN 978-0-85709-518-3.
  • ^ "Standard Test Method for Process Control Verification to Prevent Hydrogen Embrittlement in Plated or Coated Fasteners". Astm.org. Retrieved 24 February 2015.
  • ^ Federal Engineering and Design Support. "Embrittlement" (PDF). Fastenal. Fastenal Company Engineering Department. Retrieved 9 May 2015.
  • ^ "ASTM F1459 - 06(2012): Standard Test Method for Determination of the Susceptibility of Metallic Materials to Hydrogen Gas Embrittlement (HGE)". Astm.org. Retrieved 2015-02-24.
  • ^ "ASTM G142 - 98(2011) Standard Test Method for Determination of Susceptibility of Metals to Embrittlement in Hydrogen Containing Environments at High Pressure, High Temperature, or Both". Astm.org. Retrieved 2015-02-24.
  • ^ ASTM STP 543, "Hydrogen Embrittlement Testing"
  • ^ Raymond L (1974). Hydrogen Embrittlement Testing. ASTM International. ISBN 978-0-8031-0373-3.
  • ^ "ASTM F1940 - 07a(2014) Standard Test Method for Process Control Verification to Prevent Hydrogen Embrittlement in Plated or Coated Fasteners". Astm.org. Retrieved 2015-02-24.
  • ^ "ASTM F519 - 17a Standard Test Method for Mechanical Hydrogen Embrittlement Evaluation of Plating/Coating Processes and Service Environments". www.astm.org. Retrieved 21 April 2018.
  • ^ Mair, Lucy (14 January 2015). "British Land to replace 'a number of bolts' on Leadenhall Building". constructionnews.co.uk. Retrieved 21 April 2018.
  • ^ "Cheesegrater bolts to cost Severfield £6m after Leadenhall building loses five". cityam. Retrieved 22 December 2020.
  • External links


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Hydrogen_embrittlement&oldid=1101828195"

    Categories: 
    Corrosion
    Electrochemistry
    Hydrogen
    Materials degradation
    Metalworking
    Hidden categories: 
    CS1 errors: missing periodical
    CS1: long volume value
    Articles with short description
    Short description matches Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from June 2022
     



    This page was last edited on 2 August 2022, at 01:12 (UTC).

    This version of the page has been revised. Besides normal editing, the reason for revision may have been that this version contains factual inaccuracies, vandalism, or material not compatible with the Creative Commons Attribution-ShareAlike License.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki