Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Statement  





2 Application of Jordan's lemma  





3 Example  





4 Proof  














Jordan's lemma






Català
Deutsch
Español
فارسی
Français
Italiano
עברית
Қазақша

Polski
Português
Русский
Suomi
Svenska
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




Print/export  



















Appearance
   

 






From Wikipedia, the free encyclopedia
 


This is an old revision of this page, as edited by 131.111.8.96 (talk)at18:46, 28 May 2009. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
(diff)  Previous revision | Latest revision (diff) | Newer revision  (diff)

Incomplex analysis, Jordan's lemma is a result frequently used in conjunction with the residue theorem to evaluate contour integrals and improper real integrals. The theorem is named after French mathematician Camille Jordan.

Statement

Consider a function of the form

Jordan's lemma states that if

is the semicircular path of radius R lying in the upper half plane, centred at the origin, and

then

A similar statement for the lower half plane exists when .

Application of Jordan's lemma

The path C is the concatenation of the paths C1 and C2.

Jordan's lemma yields a simple way to calculate the integral along the real axis of functions holomorphic on the upper half-plane, except possibly at a finite number of non-real points a1, a2, ..., an. Consider the closed contour C, which is the concatenation of the paths C1 and C2 shown in the picture. By definition,

Since on C2 the variable z is real, the second integral is real:

Hence, if f satisfies condition (*) of Jordan's lemma, taking the limit as R tends to infinity,

Finally, the left-hand side may be computed using the residue theorem to get

where

is the residueoff at the singularity ak.

Example

The function

satisfies the condition of Jordan's lemma. Since the only singularity of f(z) in the upper half plane is at z = i, the above yields

An easy calculation gives

so that

This result exemplifies how some integrals difficult to compute with classical tools are easily tackled with the help of complex analysis.

Proof

By definition,

Now the inequality

yields

The inequalities

for and for

imply

as can be seen by explicitly computing the integrals by parts.


Retrieved from "https://en.wikipedia.org/w/index.php?title=Jordan%27s_lemma&oldid=292932358"

Category: 
Complex analysis
 



This page was last edited on 28 May 2009, at 18:46 (UTC).

This version of the page has been revised. Besides normal editing, the reason for revision may have been that this version contains factual inaccuracies, vandalism, or material not compatible with the Creative Commons Attribution-ShareAlike License.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki