Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Statement  



1.1  Remarks  







2 Application of Jordan's lemma  





3 Example  





4 Proof of Jordan's lemma  





5 See also  





6 References  














Jordan's lemma






Català
Deutsch
Español
فارسی
Français
Italiano
עברית
Қазақша

Polski
Português
Русский
Suomi
Svenska
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Incomplex analysis, Jordan's lemma is a result frequently used in conjunction with the residue theorem to evaluate contour integrals and improper integrals. The lemma is named after the French mathematician Camille Jordan.

Statement

[edit]

Consider a complex-valued, continuous function f, defined on a semicircular contour

of positive radius R lying in the upper half-plane, centered at the origin. If the function f is of the form

with a positive parameter a, then Jordan's lemma states the following upper bound for the contour integral:

with equality when g vanishes everywhere, in which case both sides are identically zero. An analogous statement for a semicircular contour in the lower half-plane holds when a < 0.

Remarks

[edit]
(*)
then by Jordan's lemma

Application of Jordan's lemma

[edit]
The path C is the concatenation of the paths C1 and C2.

Jordan's lemma yields a simple way to calculate the integral along the real axis of functions f(z) = ei a zg(z) holomorphic on the upper half-plane and continuous on the closed upper half-plane, except possibly at a finite number of non-real points z1, z2, …, zn. Consider the closed contour C, which is the concatenation of the paths C1 and C2 shown in the picture. By definition,

Since on C2 the variable z is real, the second integral is real:

The left-hand side may be computed using the residue theorem to get, for all R larger than the maximum of |z1|, |z2|, …, |zn|,

where Res(f, zk) denotes the residueoff at the singularity zk. Hence, if f satisfies condition (*), then taking the limit as R tends to infinity, the contour integral over C1 vanishes by Jordan's lemma and we get the value of the improper integral

Example

[edit]

The function

satisfies the condition of Jordan's lemma with a = 1 for all R > 0 with R ≠ 1. Note that, for R >1,

hence (*) holds. Since the only singularity of f in the upper half plane is at z = i, the above application yields

Since z = i is a simple poleoff and 1 + z2 = (z + i)(zi), we obtain

so that

This result exemplifies the way some integrals difficult to compute with classical methods are easily evaluated with the help of complex analysis.

This example shows that Jordan's lemma can be used instead of a much simpler estimation lemma. Indeed, estimation lemma suffices to calculate , as well as , Jordan's lemma here is unnecessary.

Proof of Jordan's lemma

[edit]

By definition of the complex line integral,

Now the inequality

yields

Using MR as defined in (*) and the symmetry sin θ = sin(πθ), we obtain

Since the graph of sin θisconcave on the interval θ ∈ [0, π2], the graph of sin θ lies above the straight line connecting its endpoints, hence

for all θ ∈ [0, π2], which further implies

See also

[edit]

References

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Jordan%27s_lemma&oldid=1191094666"

Categories: 
Theorems in complex analysis
Lemmas in analysis
Hidden categories: 
Articles with short description
Short description matches Wikidata
Articles containing proofs
 



This page was last edited on 21 December 2023, at 14:55 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki