Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Early simulants  





2 Later simulants  



2.1  JSC-1 and -1A  





2.2  NU-LHT and OB-1  







3 Recent simulants  





4 See also  





5 References  





6 Further reading  














Lunar regolith simulant: Difference between revisions






العربية
Français
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




Print/export  



















Appearance
   

 





Help
 

From Wikipedia, the free encyclopedia
 


Browse history interactively
 Previous editNext edit 
Content deleted Content added
Citation bot (talk | contribs)
4,993,592 edits
m Removed parameters. | You can use this bot yourself. Report bugs here.| Activated by User:Marianne Zimmerman
m use of upper/lower case
Line 3: Line 3:

A '''lunar regolith simulant''' is a terrestrial material synthesized in order to approximate the chemical, mechanical, or engineering properties of, and the mineralogy and particle size distributions of, lunar [[regolith]].<ref name=McKayEtAl1 /> Lunar regolith simulants are used by researchers who wish to research the materials handling, excavation, transportation, and uses of lunar regolith. Samples of actual lunar regolith are too scarce, and too small, for such research.

A '''lunar regolith simulant''' is a terrestrial material synthesized in order to approximate the chemical, mechanical, or engineering properties of, and the mineralogy and particle size distributions of, lunar [[regolith]].<ref name=McKayEtAl1 /> Lunar regolith simulants are used by researchers who wish to research the materials handling, excavation, transportation, and uses of lunar regolith. Samples of actual lunar regolith are too scarce, and too small, for such research.



==Early Simulants==

==Early simulants==

In the run-up to the [[Apollo program]], crushed terrestrial rocks were first used to simulate the anticipated soils that astronauts would encounter on the lunar surface.<ref>{{cite journal |last1=Salisbury |first1=John |title=Studies of the Characteristics of Probable Lunar Surface Materials |journal=Air Force Cambridge Research Laboratories (U.S.) Special Reports |date=1964 |volume=20 |url=https://catalog.hathitrust.org/Record/102198352}}</ref> In some cases the properties of these early simulants were substantially different from actual lunar soil, and the issues associated with the pervasive, fine-grained sharp dust grains on the Moon came as a surprise.<ref>{{cite journal |last1=Gaier |first1=James |title=The Effects of Lunar Dust on EVA Systems During the Apollo Missions |journal=NASA Technical Reports |date=2005 |issue=2005–213610 |url=https://history.nasa.gov/alsj/TM-2005-213610.pdf}}</ref>

In the run-up to the [[Apollo program]], crushed terrestrial rocks were first used to simulate the anticipated soils that astronauts would encounter on the lunar surface.<ref>{{cite journal |last1=Salisbury |first1=John |title=Studies of the Characteristics of Probable Lunar Surface Materials |journal=Air Force Cambridge Research Laboratories (U.S.) Special Reports |date=1964 |volume=20 |url=https://catalog.hathitrust.org/Record/102198352}}</ref> In some cases the properties of these early simulants were substantially different from actual lunar soil, and the issues associated with the pervasive, fine-grained sharp dust grains on the Moon came as a surprise.<ref>{{cite journal |last1=Gaier |first1=James |title=The Effects of Lunar Dust on EVA Systems During the Apollo Missions |journal=NASA Technical Reports |date=2005 |issue=2005–213610 |url=https://history.nasa.gov/alsj/TM-2005-213610.pdf}}</ref>



==Later Simulants==

==Later simulants==

After Apollo and particularly during the development of the [[Constellation program]], there was a large proliferation of lunar simulants produced by different organizations and researchers. Many of these were given three-letter acronyms to distinguish them (e.g., MLS-1, JSC-1), and numbers to designate subsequent versions. These simulants were broadly divided into highlands or mare soils, and were usually produced by crushing and sieving analogous terrestrial rocks (anorthosite for highlands, basalt for mare). Returned Apollo and Luna samples were used as reference materials in order to target specific properties such as elemental chemistry or particle size distribution. Many of these simulants were criticized by prominent lunar scientist Larry Taylor for a lack of quality control and wasted money on features like nanophase iron that had no documented purpose.<ref>{{cite journal |last1=Taylor |first1=Lawrence |last2=Pieters |first2=Carle |last3=Britt |first3=Daniel |title=Evaluations of lunar regolith simulants |journal=Planetary and Space Science |date=2016 |volume=126 |pages=1–7 |doi=10.1016/j.pss.2016.04.005 }}</ref>

After Apollo and particularly during the development of the [[Constellation program]], there was a large proliferation of lunar simulants produced by different organizations and researchers. Many of these were given three-letter acronyms to distinguish them (e.g., MLS-1, JSC-1), and numbers to designate subsequent versions. These simulants were broadly divided into highlands or mare soils, and were usually produced by crushing and sieving analogous terrestrial rocks (anorthosite for highlands, basalt for mare). Returned Apollo and Luna samples were used as reference materials in order to target specific properties such as elemental chemistry or particle size distribution. Many of these simulants were criticized by prominent lunar scientist Larry Taylor for a lack of quality control and wasted money on features like nanophase iron that had no documented purpose.<ref>{{cite journal |last1=Taylor |first1=Lawrence |last2=Pieters |first2=Carle |last3=Britt |first3=Daniel |title=Evaluations of lunar regolith simulants |journal=Planetary and Space Science |date=2016 |volume=126 |pages=1–7 |doi=10.1016/j.pss.2016.04.005 }}</ref>



Line 28: Line 28:

Two lunar highlands simulants, the NU-LHT (lunar highlands type) series and OB-1 (olivine-bytownite) were developed and produced in anticipation of the Constellation activities. Both of these simulants are sourced mostly from rare [[anorthosite]] deposits on the Earth. For NU-LHT the anorthosite came from the Stillwater complex, and for OB-1 it came from the Shawmere Anorthosite in Ontario. Neither of these simulants were widely distributed.

Two lunar highlands simulants, the NU-LHT (lunar highlands type) series and OB-1 (olivine-bytownite) were developed and produced in anticipation of the Constellation activities. Both of these simulants are sourced mostly from rare [[anorthosite]] deposits on the Earth. For NU-LHT the anorthosite came from the Stillwater complex, and for OB-1 it came from the Shawmere Anorthosite in Ontario. Neither of these simulants were widely distributed.



==Recent Simulants==

==Recent simulants==



Most of the previously developed lunar simulants are no longer being produced or distributed outside of NASA. Multiple companies have tried to sell regolith simulants for profit, including Zybek Advanced Products, ORBITEC, and [[Deep Space Industries]]. None of these efforts have seen much success. NASA is unable to sell simulants, or distribute unlimited amounts for free; however, NASA can award set amounts of simulant to grant winners.

Most of the previously developed lunar simulants are no longer being produced or distributed outside of NASA. Multiple companies have tried to sell regolith simulants for profit, including Zybek Advanced Products, ORBITEC, and [[Deep Space Industries]]. None of these efforts have seen much success. NASA is unable to sell simulants, or distribute unlimited amounts for free; however, NASA can award set amounts of simulant to grant winners.


Revision as of 20:27, 23 July 2019

A 1 kg jar of JSC-1A lunar simulant
About 5 mL of JSC-1A

Alunar regolith simulant is a terrestrial material synthesized in order to approximate the chemical, mechanical, or engineering properties of, and the mineralogy and particle size distributions of, lunar regolith.[1] Lunar regolith simulants are used by researchers who wish to research the materials handling, excavation, transportation, and uses of lunar regolith. Samples of actual lunar regolith are too scarce, and too small, for such research.

Early simulants

In the run-up to the Apollo program, crushed terrestrial rocks were first used to simulate the anticipated soils that astronauts would encounter on the lunar surface.[2] In some cases the properties of these early simulants were substantially different from actual lunar soil, and the issues associated with the pervasive, fine-grained sharp dust grains on the Moon came as a surprise.[3]

Later simulants

After Apollo and particularly during the development of the Constellation program, there was a large proliferation of lunar simulants produced by different organizations and researchers. Many of these were given three-letter acronyms to distinguish them (e.g., MLS-1, JSC-1), and numbers to designate subsequent versions. These simulants were broadly divided into highlands or mare soils, and were usually produced by crushing and sieving analogous terrestrial rocks (anorthosite for highlands, basalt for mare). Returned Apollo and Luna samples were used as reference materials in order to target specific properties such as elemental chemistry or particle size distribution. Many of these simulants were criticized by prominent lunar scientist Larry Taylor for a lack of quality control and wasted money on features like nanophase iron that had no documented purpose.[4]

JSC-1 and -1A

JSC-1 (Johnson Space Center Number One) was a lunar regolith simulant that was developed in 1994 by NASA and the Johnson Space Center. Its developers intended it to approximate the lunar soil of the maria. It was sourced from a basaltic ash with a high glass content.[1]

In 2005, NASA contracted with Orbital Technologies Corporation (ORBITEC) for a second batch of simulant in three grades:[5]

NASA received 14 metric tons of JSC-1A, and one ton each of AF and AC in 2006. Another 15 tons of JSC-1A and 100 kg of JSC-1F were produced by ORBITEC for commercial sale, but ORBITEC is no longer selling simulants and was acquired by the Sierra Nevada Corporation. An 8-ton sand box of commercial JSC‐1A is available for daily rental from the NASA Solar System Exploration Research Virtual Institute (SSERVI).

JSC-1A can geopolymerize in an alkaline solutions resulting in a hard, rock-like, material.[6][7] Tests show that the maximum compressive and flexural strength of the 'lunar' geopolymer is comparable to that of conventional cements.[7]

Geopolymers from lunar (JSC-1A) and Martian (JSC MARS-1A) dust simulants produced at the University of Birmingham[7]

JSC-1 and JSC-1A are now no longer available outside of NASA centers.

NU-LHT and OB-1

Two lunar highlands simulants, the NU-LHT (lunar highlands type) series and OB-1 (olivine-bytownite) were developed and produced in anticipation of the Constellation activities. Both of these simulants are sourced mostly from rare anorthosite deposits on the Earth. For NU-LHT the anorthosite came from the Stillwater complex, and for OB-1 it came from the Shawmere Anorthosite in Ontario. Neither of these simulants were widely distributed.

Recent simulants

Most of the previously developed lunar simulants are no longer being produced or distributed outside of NASA. Multiple companies have tried to sell regolith simulants for profit, including Zybek Advanced Products, ORBITEC, and Deep Space Industries. None of these efforts have seen much success. NASA is unable to sell simulants, or distribute unlimited amounts for free; however, NASA can award set amounts of simulant to grant winners.

Several lunar simulants have been developed recently and are either being sold commercially or are available for rent inside large regolith bins. These include the Lunar Highlands Simulant (LHS-1) and Lunar Mare Simulant (LMS-1) produced and distributed by the not-for-profit Exolith Lab run out of the University of Central Florida.

See also

References

  1. ^ a b David S. McKay; James L. Carter; Walter W. Boles; Carlton C. Allen; Judith H. Allton (1994). "JSC-1: A new lunar soil simulant" (PDF). In Rodney G. Galloway; Stanley Lokaj (eds.). Engineering, Construction, and Operations in Space IV; Proceedings of the 4th International Conference, Albuquerque, New Mexico, February 26–March 3, 1994. Vol. 2. New York: American Society of Civil Engineers. pp. 857–866. ISBN 0872629376. {{cite conference}}: Unknown parameter |booktitle= ignored (|book-title= suggested) (help); Unknown parameter |last-author-amp= ignored (|name-list-style= suggested) (help)
  • ^ Salisbury, John (1964). "Studies of the Characteristics of Probable Lunar Surface Materials". Air Force Cambridge Research Laboratories (U.S.) Special Reports. 20.
  • ^ Gaier, James (2005). "The Effects of Lunar Dust on EVA Systems During the Apollo Missions" (PDF). NASA Technical Reports (2005–213610).
  • ^ Taylor, Lawrence; Pieters, Carle; Britt, Daniel (2016). "Evaluations of lunar regolith simulants". Planetary and Space Science. 126: 1–7. doi:10.1016/j.pss.2016.04.005.
  • ^ http://isru.msfc.nasa.gov/lib/workshops/2009/03_JSC-1A_Lunar_RegSimulant_Update_BGustafson.pdf
  • ^ Montes, Broussard, Gongre, Simicevic, Mejia, Tham, Allouche, Davis; Evaluation of lunar regolith geopolymer binder as a radioactive shielding material for space exploration applications, Adv. Space Res. 56:1212–1221 (2015)
  • ^ a b c Alexiadis, Alberini, Meyer; Geopolymers from lunar and Martian soil simulants, Adv. Space Res. (2017) 59:490–495, doi:10.1016/j.asr.2016.10.003
  • Further reading


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Lunar_regolith_simulant&oldid=907573898"

    Categories: 
    Concrete
    Materials science
    Space colonization
    Hidden categories: 
    CS1 errors: unsupported parameter
    CS1: long volume value
     



    This page was last edited on 23 July 2019, at 20:27 (UTC).

    This version of the page has been revised. Besides normal editing, the reason for revision may have been that this version contains factual inaccuracies, vandalism, or material not compatible with the Creative Commons Attribution-ShareAlike License.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki