Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Introduction  





2 Flexural versus tensile strength  





3 Measuring flexural strength  





4 See also  





5 References  














Flexural strength






Català
Deutsch
Español
فارسی
ि


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


The flexural strength is stress at failure in bending. It is equal to or slightly larger than the failure stress in tension.

Flexural strength, also known as modulus of rupture, or bend strength, or transverse rupture strength is a material property, defined as the stress in a material just before it yields in a flexure test.[1] The transverse bending test is most frequently employed, in which a specimen having either a circular or rectangular cross-section is bent until fracture or yielding using a three-point flexural test technique. The flexural strength represents the highest stress experienced within the material at its moment of yield. It is measured in terms of stress, here given the symbol .

Introduction[edit]

Fig. 1
Fig. 1 - Beam of material under bending. Extreme fibers at B (compression) and A (tension)
Fig. 2
Fig. 2 - Stress distribution through beam thickness

When an object is formed of a single material, like a wooden beam or a steel rod, is bent (Fig. 1), it experiences a range of stresses across its depth (Fig. 2). At the edge of the object on the inside of the bend (concave face) the stress will be at its maximum compressive stress value. At the outside of the bend (convex face) the stress will be at its maximum tensile value. These inner and outer edges of the beam or rod are known as the 'extreme fibers'. Most materials generally fail under tensile stress before they fail under compressive stress[citation needed]

Flexural versus tensile strength[edit]

The flexural strength would be the same as the tensile strength if the material were homogeneous. In fact, most materials have small or large defects in them which act to concentrate the stresses locally, effectively causing a localized weakness. When a material is bent only the extreme fibers are at the largest stress so, if those fibers are free from defects, the flexural strength will be controlled by the strength of those intact 'fibers'. However, if the same material was subjected to only tensile forces then all the fibers in the material are at the same stress and failure will initiate when the weakest fiber reaches its limiting tensile stress. Therefore, it is common for flexural strengths to be higher than tensile strengths for the same material. Conversely, a homogeneous material with defects only on its surfaces (e.g., due to scratches) might have a higher tensile strength than flexural strength.

If we don't take into account defects of any kind, it is clear that the material will fail under a bending force which is smaller than the corresponding tensile force. Both of these forces will induce the same failure stress, whose value depends on the strength of the material.

For a rectangular sample, the resulting stress under an axial force is given by the following formula:

This stress is not the true stress, since the cross section of the sample is considered to be invariable (engineering stress).

The resulting stress for a rectangular sample under a load in a three-point bending setup (Fig. 3) is given by the formula below (see "Measuring flexural strength").

The equation of these two stresses (failure) yields:[2]

Typically, L (length of the support span) is much larger than d, so the fraction is larger than one.

Measuring flexural strength[edit]

Fig. 3 - Beam under 3 point bending

For a rectangular sample under a load in a three-point bending setup (Fig. 3), starting with the classical form of maximum bending stress:

For a simple supported beam as shown in Fig. 3, assuming the load is centered between the supports, the maximum moment is at the center and is equal to:

For a rectangular cross section,

(central axis to the outermost fiber of the rectangle)

(Second moment of area for a rectangle)


Combining these terms together in the classical bending stress equation:

For a rectangular sample under a load in a four-point bending setup where the loading span is one-third of the support span:

For the 4 pt bend setup, if the loading span is 1/2 of the support span (i.e. Li = 1/2 L in Fig. 4):

If the loading span is neither 1/3 nor 1/2 the support span for the 4 pt bend setup (Fig. 4):

Fig. 4 - Beam under 4 point bending

See also[edit]

References[edit]

  1. ^ Michael Ashby (2011). Materials selection in mechanical design. Butterworth-Heinemann. p. 40. ISBN 9781856176637.
  • ^ Callister, William D. Jr. (2003). Materials Science and Engineering. John Wiley & Sons, Inc., 5th Ed. p. 409. ISBN 9780471135760.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Flexural_strength&oldid=1225606495"

    Category: 
    Continuum mechanics
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Articles needing additional references from November 2008
    All articles needing additional references
    All articles with unsourced statements
    Articles with unsourced statements from October 2013
    Articles with GND identifiers
    Articles with LNB identifiers
     



    This page was last edited on 25 May 2024, at 15:08 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki