Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Proposed design  





2 Advantages of the design  





3 Limitations  





4 See also  





5 References  














Nuclear salt-water rocket: Difference between revisions






العربية
Русский

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




Print/export  



















Appearance
   

 





Help
 

From Wikipedia, the free encyclopedia
 


Browse history interactively
 Previous editNext edit 
Content deleted Content added
MiddleRaster (talk | contribs)
417 edits
Tags: Mobile edit Mobile web edit Advanced mobile edit
mNo edit summary
Line 4: Line 4:


==Proposed design==

==Proposed design==

Orthodox [[chemical rocket]]s use heat energy produced by chemical reactions in a reaction chamber to heat the gas products. The products are then expelled through a propulsion nozzle at a very high speed, creating thrust.<ref>{{cite journal|last1=Angelin|first1=Marcus|last2=Rahm|first2=Martin|last3=Gabrielson|first3=Erik|last4=Gumaelius|first4=Lena|title=Rocket Scientist for a Day: Investigating Alternatives for Chemical Propulsion|journal=Journal of Chemical Education|date=Aug 17, 2012|volume=89|pages=1301–1304|doi=10.1021/ed200848r|bibcode=2012JChEd..89.1301A}}</ref> In a [[nuclear thermal rocket]] (NTR), thrust is created by heating a fluid by using a nuclear fission reactor. The lower the [[molecular weight]] of the exhaust, hydrogen having the lowest possible, the more efficient the motor can be. However, in this engine the propellant can be any of many fluids having suitable properties as it does not participate in generating heat.<ref>{{cite web|last1=Babula|first1=Mariah|title=Nuclear Thermal Rocket Propulsion|url=http://trajectory.grc.nasa.gov/projects/ntp/|archive-url=https://web.archive.org/web/20130611233450/http://trajectory.grc.nasa.gov/projects/ntp/|url-status=dead|archive-date=June 11, 2013|website=NASA.gov|publisher=NASA Space Propulsion and mission analysis office|access-date=May 1, 2016}}</ref> In a NSWR the nuclear salt-water would be made to flow through a reaction chamber and out of an exhaust nozzle in such a way and at such speeds that critical mass will begin once the chamber is filled to a certain point; however, the peak [[neutron flux]] of the [[Nuclear fission|fission]] reaction would occur outside the vehicle.<ref name="zubrin91"/>

[[Chemical rocket]]s use heat energy produced by chemical reactions in a reaction chamber to heat the gas products. The products are then expelled through a propulsion nozzle at a very high speed, creating thrust.<ref>{{cite journal|last1=Angelin|first1=Marcus|last2=Rahm|first2=Martin|last3=Gabrielson|first3=Erik|last4=Gumaelius|first4=Lena|title=Rocket Scientist for a Day: Investigating Alternatives for Chemical Propulsion|journal=Journal of Chemical Education|date=Aug 17, 2012|volume=89|pages=1301–1304|doi=10.1021/ed200848r|bibcode=2012JChEd..89.1301A}}</ref> In a [[nuclear thermal rocket]] (NTR), thrust is created by heating a fluid by using a nuclear fission reactor. The lower the [[molecular weight]] of the exhaust, hydrogen having the lowest possible, the more efficient the motor can be. However, in this engine the propellant can be any of many fluids having suitable properties as it does not participate in generating heat.<ref>{{cite web|last1=Babula|first1=Mariah|title=Nuclear Thermal Rocket Propulsion|url=http://trajectory.grc.nasa.gov/projects/ntp/|archive-url=https://web.archive.org/web/20130611233450/http://trajectory.grc.nasa.gov/projects/ntp/|url-status=dead|archive-date=June 11, 2013|website=NASA.gov|publisher=NASA Space Propulsion and mission analysis office|access-date=May 1, 2016}}</ref> In a NSWR the nuclear salt-water would be made to flow through a reaction chamber and out of an exhaust nozzle in such a way and at such speeds that critical mass will begin once the chamber is filled to a certain point; however, the peak [[neutron flux]] of the [[Nuclear fission|fission]] reaction would occur outside the vehicle.<ref name="zubrin91"/>



== Advantages of the design ==

== Advantages of the design ==


Revision as of 08:30, 10 November 2021

Anuclear salt-water rocket (NSWR) is a theoretical type of nuclear thermal rocket which was designed by Robert Zubrin.[1] In place of traditional chemical propellant, such as that in a chemical rocket, the rocket would be fueled by saltsofplutonium or 20 percent enriched uranium. The solution would be contained in a bundle of pipes coated in boron carbide (for its properties of neutron absorption). Through a combination of the coating and space between the pipes, the contents would not reach critical mass until the solution is pumped into a reaction chamber, thus reaching a critical mass, and being expelled through a nozzle to generate thrust.[1]

Proposed design

Chemical rockets use heat energy produced by chemical reactions in a reaction chamber to heat the gas products. The products are then expelled through a propulsion nozzle at a very high speed, creating thrust.[2] In a nuclear thermal rocket (NTR), thrust is created by heating a fluid by using a nuclear fission reactor. The lower the molecular weight of the exhaust, hydrogen having the lowest possible, the more efficient the motor can be. However, in this engine the propellant can be any of many fluids having suitable properties as it does not participate in generating heat.[3] In a NSWR the nuclear salt-water would be made to flow through a reaction chamber and out of an exhaust nozzle in such a way and at such speeds that critical mass will begin once the chamber is filled to a certain point; however, the peak neutron flux of the fission reaction would occur outside the vehicle.[1]

Advantages of the design

There are several advantages relative to conventional NTR designs. As the peak neutron flux and fission reaction rates would occur outside the vehicle, these activities could be much more vigorous than they could be if it was necessary to house them in a vessel (which would have temperature limits due to materials constraints).[1] Additionally, a contained reactor can only allow a small percentage of its fuel to undergo fission at any given time, otherwise it would overheat and melt down (or explode in a runaway fission chain reaction).[4] The fission reaction in an NSWR is dynamic and because the reaction products are exhausted into space it doesn't have a limit on the proportion of fission fuel that reacts. In many ways NSWRs combine the advantages of fission reactors and fission bombs.[1]

Because they can harness the power of what is essentially a continuous nuclear fission explosion, NSWRs would have both very high thrust and very high exhaust velocity, meaning that the rocket would be able to accelerate quickly as well as be extremely efficient in terms of propellant usage. The combination of high thrust and high specific impulse is a very rare trait in the rocket world.[5] One design would generate 13 meganewtons of thrust at 66 km/s exhaust velocity (or 6,730 seconds ISP compared to ~4.5 km/s (450 s ISP) exhaust velocity for the best chemical rockets of today).[6]

The design and calculations discussed above are using 20 percent enriched uranium salts. However, it would be plausible to use another design which would be capable of achieving much higher exhaust velocities (4,725 km/s) and use a 30,000 tonne ice comet along with 7,500 tonnes of highly enriched uranium salts to propel a 300 tonne spacecraft up to 7.62% of the speed of light and potentially arrive at Alpha Centauri after a 60-year journey.[1]

"NSWRs share many of the features of Orion propulsion systems, except that NSWRs would generate continuous rather than pulsed thrust and may be workable on much smaller scales than the smallest feasible Orion designs (which are generally large, due to the requirements of the shock-absorber system and the minimum size of efficient nuclear explosives)."[7]

Limitations

The propellant used in the initial design would contain a rather large amount of the relatively expensive isotope 235U, which would not be very cost effective. However, if the use of NSWR began to rise, it would be possible to replace this with the cheaper isotopes 233Uor239Pu in either fission breeder reactors or (much better) nuclear fusion–fission hybrid reactors. These fissiles would have the right characteristics to serve nearly as well, at a relatively low cost.[1][8]

Another major limitation of the nuclear salt water rocket design by Robert Zubrin included the lack of a material to be used in the reaction chamber that could actually sustain such a reaction within a spacecraft. Zubrin claimed in his design that the apparatus was created so that the liquid flow rate or velocity was what mattered most in the process, not the material. Therefore, he argued that if the proper velocity was chosen for the liquid traveling through the reaction chamber, the site of maximum fission release could then be located at the end of the chamber, thus allowing the system to remain intact and safe to operate. These claims have still not been proven due to no test of such a device having ever been conducted.[9]

For example, Zubrin argues that if diluted nuclear fuel flows into the chamber at speed similar to diffusion speed of thermal neutrons, then nuclear reaction is confined in the chamber and does not damage the rest of the system (the nuclear analog of a gas burner). A possible problem in that line of thinking is that neutrons do not all diffuse at the same velocity, but have a broad distribution over several orders of magnitude. It is possible that tails of this velocity distribution would be sufficient to generate enough heat in fuel feeding system (by scattering and fission) to destroy the system.[citation needed] This question can be perhaps answered by detailed Monte-Carlo simulations of neutron transport.

The vessel's exhaust would contain radioactive isotopes, but in space these would be rapidly dispersed after travelling only a short distance; the exhaust would also be travelling at high speed (in Zubrin's scenario, faster than Solar escape velocity, allowing it to eventually leave the Solar System). This is however of little use on the surface of a planet, where a NSWR would eject massive quantities of superheated steam, still containing fissioning nuclear salts. Terrestrial testing might be subject to reasonable objections; as one physicist wrote, "Writing the environmental impact statement for such tests [...] might present an interesting problem ...".[10] It is also not certain that fission in a NSWR could be controlled: "Whether fast criticality can be controlled in a rocket engine remains an open question".[11]

See also

References

  1. ^ a b c d e f g R. Zubrin (1991). "Nuclear Salt Water Rockets: High Thrust at 10,000 sec ISP" (PDF). Journal of the British Interplanetary Society. 44: 371–376.
  • ^ Angelin, Marcus; Rahm, Martin; Gabrielson, Erik; Gumaelius, Lena (Aug 17, 2012). "Rocket Scientist for a Day: Investigating Alternatives for Chemical Propulsion". Journal of Chemical Education. 89: 1301–1304. Bibcode:2012JChEd..89.1301A. doi:10.1021/ed200848r.
  • ^ Babula, Mariah. "Nuclear Thermal Rocket Propulsion". NASA.gov. NASA Space Propulsion and mission analysis office. Archived from the original on June 11, 2013. Retrieved May 1, 2016.
  • ^ Hasegawa, Koichi (March 2012). "Facing Nuclear Risks: Lessons from the Fukushima Nuclear Disaster". International Journal of Japanese Sociology. 21 (1): 84–91. doi:10.1111/j.1475-6781.2012.01164.x.
  • ^ Braeunig, Robert. "Rocket Propulsion". braeunig.us. Archived from the original on June 12, 2006. Retrieved May 1, 2016.
  • ^ http://path-2.narod.ru/design/base_e/nswr.pdf
  • ^ Dr. David P. Stern (19 November 2003). "Far-out Pathways to Space: Nuclear Power". From Stargazers to Starships. Retrieved 14 November 2012.
  • ^ Kang, Jungmin; von Hippel, Frank N. (2001). "U-232 and the ProliferationResistance of U-233 in Spent Fuel". Science and Global Security. 9: 1–32. Bibcode:2001S&GS....9....1K. doi:10.1080/08929880108426485.
  • ^ "Alternate View Column AV-56". www.npl.washington.edu. Retrieved 2017-04-18.
  • ^ John G. Cramer (December 1992). "Nuke Your Way to the Stars (Alternate View Column AV-56)". Analog Science Fiction and Fact. Retrieved 2012-03-07.
  • ^ Dr. Ralph L. McNutt Jr. (31 May 1999). "A Realistic Interstellar Explorer" (PDF). Phase I Final Report NASA Institute for Advanced Concepts. Retrieved 14 November 2012.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Nuclear_salt-water_rocket&oldid=1054483634"

    Category: 
    Nuclear spacecraft propulsion
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from July 2018
     



    This page was last edited on 10 November 2021, at 08:30 (UTC).

    This version of the page has been revised. Besides normal editing, the reason for revision may have been that this version contains factual inaccuracies, vandalism, or material not compatible with the Creative Commons Attribution-ShareAlike License.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki