Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 The planetesimal hypothesis  





2 Evidence in the Solar System  





3 Extrasolar protoplanets  



3.1  Unconfirmed protoplanets  







4 See also  





5 References  





6 External links  














Protoplanet: Difference between revisions






Afrikaans
العربية
Aragonés
Български
Català
Čeština
Dansk
Deutsch
Eesti
Español
فارسی
Français
Galego

Hrvatski
Bahasa Indonesia
Italiano
עברית
Jawa
Lëtzebuergesch
Lietuvių
Македонски
Bahasa Melayu
Nederlands

Norsk bokmål
Polski
Português
Română
Русский
Slovenčina
Suomi
Svenska
Татарча / tatarça
Türkçe
Українська
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 





Help
 

From Wikipedia, the free encyclopedia
 


Browse history interactively
 Previous edit
Content deleted Content added
Idioma-bot (talk | contribs)
55,031 edits
m robot Adding: lt:Proplaneta
→‎Observed protoplanets: Observed protoplanets > Extrasolar protoplanets
 
(176 intermediate revisions by 100 users not shown)
Line 1: Line 1:

{{Short description|Large planetary embryo}}

'''Protoplanets''' are moon-sized planet embryos within [[protoplanetary disc]]s. They are believed to form out of kilometer-sized [[planetesimal]]s that attract each other gravitationally and collide. According to [[solar nebula|planet formation theory]], protoplanets perturb each other's orbits slightly and thus collide in giant impacts to gradually form the real [[planet]]s.

[[File:Vesta full mosaic.jpg|thumb|A surviving protoplanet, [[4 Vesta|Vesta]]]]

A '''protoplanet''' is a large planetary embryo that originated within a [[protoplanetary disk]] and has undergone internal melting to produce a differentiated interior. Protoplanets are thought to form out of kilometer-sized [[planetesimal]]s that gravitationally perturb each other's orbits and collide, gradually coalescing into the dominant [[planet]]s.



==The planetesimal hypothesis==

In the case of the [[Solar System]] it is thought that the collisions of planetesimals created a few hundred planetary embryos. Such embryos had masses of about 10<sup>22</sup> to 10<sup>23</sup>&nbsp;kg and were a few thousand kilometres in diameter. Over the course of about 100&nbsp;[[Annum|Ma]] they were involved in giant impacts with one another. The exact sequence whereby planetary embryos collided to assemble the planets is not known, but it is thought that initial collisions would have replaced the first "generation" of embryos with a second generation consisting of fewer but larger embryos. These in their turn would have collided to create a third generation of fewer but even larger embryos. Eventually only a handful of embryos were left, which collided to complete the assembly of the planets proper.<ref>{{cite book

A [[planetesimal]] is an object formed from dust, rock, and other materials, measuring from meters to hundreds of kilometers in size.

|title=An Introduction to the Solar System

According to the [[Chamberlin–Moulton planetesimal hypothesis]] and the theories of [[Viktor Safronov]], a protoplanetary disk of materials such as gas and dust would orbit a star early in the formation of a planetary system. The action of [[gravity]] on such materials form larger and larger chunks until some reach the size of planetesimals.<ref name="Cessna">{{cite web |last1=Cessna |first1=Abby |title=Planetesimals |url=https://www.universetoday.com/35974/planetesimals/ |website=Universe Today |access-date=5 April 2022 |date=26 July 2009}}</ref><ref name="Ahrens">{{cite journal |last1=Ahrens |first1=T J |title=Impact Erosion of Terrestrial Planetary Atmospheres |journal=Annual Review of Earth and Planetary Sciences |date=1 May 1993 |volume=21 |issue=1 |pages=525–555 |doi=10.1146/annurev.ea.21.050193.002521 |bibcode=1993AREPS..21..525A |url=https://doi.org/10.1146/annurev.ea.21.050193.002521 |access-date=5 April 2022 |issn=0084-6597|hdl=2060/19920021677 |hdl-access=free }}</ref>

|pages=p. 56

|first=Neil

|last=McBride

|coauthors=Iain Gilmour, Philip A. Bland, Elaine A. Moore, Mike Widdowson, Ian Wright

|publisher=Cambridge University Press

|location=Cambridge

|date=2004

|isbn=978052183735}}</ref>



It is thought that the collisions of planetesimals created a few hundred larger planetary embryos. Over the course of hundreds of millions of years, they collided with one another. The exact sequence whereby planetary embryos collided to assemble the planets is not known, but it is thought that initial collisions would have replaced the first "generation" of embryos with a second generation consisting of fewer but larger embryos. These in their turn would have collided to create a third generation of fewer but even larger embryos. Eventually, only a handful of embryos were left, which collided to complete the assembly of the [[planet]]s proper.<ref>{{cite book|title=An Introduction to the Solar System|pages=56|first=Neil|last=McBride|author2=Iain Gilmour |author3=Philip A. Bland |author4=Elaine A. Moore |author5=Mike Widdowson |author6=Ian Wright |publisher=[[Cambridge University Press]]|location=Cambridge|year=2004|isbn=9780521837354}}</ref>

Early protoplanets had more [[radioactive]] elements, the quantity of which has been reduced over time due to [[radioactive decay]]. Heating due to radioactivity, impact, and gravitational pressure melted parts of protoplanets as they grew toward being [[planet]]s. In melted zones their heavier [[Chemical element|element]]s sank to the center; while lighter elements rose to the surface; such a process is known as [[planetary differentiation]]. Composition of some [[meteorite]]s show that differentiation took place in some asteroids.



Early protoplanets had more [[radioactive]] elements,<ref>{{cite web|url=https://www.universetoday.com/37053/protoplanets/|title=Protoplanets

The [[giant impact theory]] proposes that Earth's [[Moon]] formed from a colossal impact of a hypothetical protoplanet, named [[Theia (planet)|Theia]], with Earth early in the solar system's history.

|first=Abby|last=Cessna|year=2009|publisher=Universe Today}}</ref> the quantity of which has been reduced over time due to [[radioactive decay]]. Heating due to radioactivity, impact, and gravitational pressure melted parts of protoplanets as they grew toward being planets. In melted zones their heavier [[Chemical element|element]]s sank to the center, whereas lighter elements rose to the surface. Such a process is known as [[planetary differentiation]]. The composition of some [[meteorite]]s show that differentiation took place in some [[asteroid]]s.


==Evidence in the Solar System==

In the case of the [[Solar System]], it is thought that the collisions of planetesimals created a few hundred planetary embryos. Such embryos were similar to [[Ceres (dwarf planet)|Ceres]] and [[Pluto]] with masses of about 10<sup>22</sup> to 10<sup>23</sup>&nbsp;kg and were a few thousand kilometers in diameter.{{fact|date=October 2022}}


According to the [[giant impact hypothesis]], the [[Moon]] formed from a colossal impact of a hypothetical protoplanet called [[Theia (planet)|Theia]] with Earth, early in the [[Formation and evolution of the Solar System|Solar System's history]].{{fact|date=October 2022}}


In the inner Solar System, the three protoplanets to survive more-or-less intact are the [[asteroid]]s [[Ceres (dwarf planet)|Ceres]], [[2 Pallas|Pallas]], and [[4 Vesta|Vesta]]. [[16 Psyche|Psyche]] is likely the survivor of a violent hit-and-run with another object that stripped off the outer, rocky layers of a protoplanet.<ref name=NASA15-196>{{cite web|url=http://www.nasa.gov/press-release/nasa-selects-investigations-for-future-key-planetary-mission|title=NASA Selects Investigations for Future Key Planetary Mission|date=30 September 2015 }}</ref> The asteroid [[9 Metis|Metis]] may also have a similar origin history to that of Psyche.<ref name="Kelley00">{{cite journal|last=Kelley |first=Michael S|author2=Michael J. Gaffey

|title=9 Metis and 113 Amalthea: A Genetic Asteroid Pair|journal=Icarus|volume=144 |issue=1 |pages=27–38 |date=2000|doi=10.1006/icar.1999.6266 |bibcode=2000Icar..144...27K}}</ref> The asteroid [[21 Lutetia|Lutetia]] also has characteristics that resemble a protoplanet.<ref>{{cite web

|title = BIG PIC: 2 Pallas, the Asteroid with Protoplanetary Attitude|work = Discovery Space| publisher = [[Discovery Communications]]| date = 2009-10-08| url = http://dsc.discovery.com/space/big-pic/hubble-pallas-asteroid-protoplanet.html| access-date = 2009-10-08}}</ref><ref>{{cite web| last = Klotz| first = Irene| title = ASTEROID FAILS TO MAKE IT BIG: A newly studied asteroid is actually a planetary building block that stopped growing.| work = [[Discovery News]]| publisher = [[Discovery Communications]]| date = 2011-10-27|url=http://news.discovery.com/space/asteroid-protoplanet-lutetia-rosetta-111027.html| access-date = 2011-10-27}}</ref> [[Kuiper belt|Kuiper-belt]] [[dwarf planet]]s have also been referred to as protoplanets.<ref name=msnbc>{{cite web|date=2009-10-08|title=Protoplanet frozen in time|publisher=[[MSNBC]]|author=Alan Boyle|url=http://cosmiclog.msnbc.msn.com/archive/2009/10/08/2092402.aspx|archive-url=https://web.archive.org/web/20091010023833/http://cosmiclog.msnbc.msn.com/archive/2009/10/08/2092402.aspx|url-status=dead|archive-date=2009-10-10|access-date=2009-09-12}}</ref> Because [[iron meteorite]]s have been found on Earth, it is deemed likely that there once were other metal-cored protoplanets in the [[asteroid belt]] that since have been disrupted and that are the source of these meteorites.{{fact|date=October 2022}}


==Extrasolar protoplanets==

In February 2013 astronomers made the first direct observation of a candidate protoplanet forming in a disk of gas and dust around a distant star, [[HD 100546]].<ref>{{cite web|url=http://www.eso.org/public/news/eso1310/|title=The Birth of a Giant Planet?|publisher=[[European Southern Observatory]]|date=28 February 2013|access-date=2 March 2013}}</ref><ref name="quanz13">{{cite journal|author=Quanz, Sasch P.|display-authors=4|author2=Amara, Adam|author3=Meyer, Michael P.|author4=Kenworthy, Matthew P.|author5=Kasper, Markus|author6=Girard, Julien H.|date=2013|title=A young protoplanet candidate embedded in the circumstellar disk of HD 100546|journal= Astrophysical Journal|volume=766|issue=1|at=L1|doi=10.1088/2041-8205/766/1/l1|arxiv = 1302.7122 |bibcode = 2013ApJ...766L...1Q |s2cid=56140977}}</ref> Subsequent observations suggest that several protoplanets may be present in the gas disk.<ref>{{cite journal |last1=Garufi |first1=A. |last2=Quanz |first2=S. P. |last3=Schmid |first3=H. M. |last4=Mulders |first4=G. D. |last5=Avenhaus |first5=H. |last6=Boccaletti |first6=A. |last7=Ginski |first7=C. |last8=Langlois |first8=M. |last9=Stolker |first9=T. |last10=Augereau |first10=J.-C. |last11=Benisty |first11=M. |last12=Lopez |first12=B. |last13=Dominik |first13=C. |last14=Gratton |first14=R. |last15=Henning |first15=T. |last16=Janson |first16=M. |last17=Ménard |first17=F. |last18=Meyer |first18=M. R. |last19=Pinte |first19=C. |last20=Sissa |first20=E. |last21=Vigan |first21=A. |last22=Zurlo |first22=A. |last23=Bazzon |first23=A. |last24=Buenzli |first24=E. |last25=Bonnefoy |first25=M. |last26=Brandner |first26=W. |last27=Chauvin |first27=G. |last28=Cheetham |first28=A. |last29=Cudel |first29=M. |last30=Desidera |first30=S. |last31=Feldt |first31=M. |last32=Galicher |first32=R. |last33=Kasper |first33=M. |last34=Lagrange |first34=A.-M. |last35=Lannier |first35=J. |last36=Maire |first36=A. L. |last37=Mesa |first37=D. |last38=Mouillet |first38=D. |last39=Peretti |first39=S. |last40=Perrot |first40=C. |last41=Salter |first41=G. |last42=Wildi |first42=F. |title=The SPHERE view of the planet-forming disk around HD 100546 |journal=Astronomy & Astrophysics |date=April 2016 |volume=588 |pages=A8 |doi=10.1051/0004-6361/201527940 |url=https://www.aanda.org/articles/aa/full_html/2016/04/aa27940-15/aa27940-15.html |access-date=5 April 2022 |language=en |issn=0004-6361|doi-access=free |arxiv=1601.04983 |bibcode=2016A&A...588A...8G }}</ref>


Another protoplanet, AB Aur b, may be in the earliest observed stage of formation for a gas giant. It is located in the gas disk of the star [[AB Aurigae]]. AB Aur b is among the largest exoplanets identified, and has a distant orbit, three times as far as Neptune is from the Earth's sun. Observations of AB Aur b may challenge conventional thinking about how planets are formed. It was viewed by the [[Subaru Telescope]] and the [[Hubble Space Telescope]].<ref name="CBC">{{cite news |title=Gigantic Jupiter-like alien planet observed still 'in the womb' |url=https://www.cbc.ca/news/science/planet-in-the-womb-1.6408539 |access-date=5 April 2022 |work=CBC News |date=April 5, 2022}}</ref>


Rings, gaps, spirals, dust concentrations and shadows in [[Protoplanetary disk|protoplanetary disks]] could be caused by protoplanets. These structures are not completely understood and are therefore not seen as a proof for the presence of a protoplanet.<ref name=":3">{{Cite journal |last1=Pinte |first1=Christophe |last2=Teague |first2=Richard |last3=Flaherty |first3=Kevin |last4=Hall |first4=Cassandra |last5=Facchini |first5=Stefano |last6=Casassus |first6=Simon |date=2022-03-01 |title=Kinematic Structures in Planet-Forming Disks |journal=Protostars and Planets VII |volume=534 |page=645 |arxiv=2203.09528 |bibcode=2023ASPC..534..645P |url=https://ui.adsabs.harvard.edu/abs/2022arXiv220309528P}}</ref> One new emerging way to study the effect of protoplanets on the disk are [[Atomic and molecular astrophysics|molecular line]] observations of protoplanetary disks in the form of gas velocity maps.<ref name=":3" /> [[HD 97048|HD 97048 b]] is the first protoplanet detected by disk [[kinematics]] in the form of a kink in the gas velocity map.<ref>{{Cite journal |last1=Pinte |first1=C. |last2=van der Plas |first2=G. |last3=Ménard |first3=F. |last4=Price |first4=D. J. |last5=Christiaens |first5=V. |last6=Hill |first6=T. |last7=Mentiplay |first7=D. |last8=Ginski |first8=C. |last9=Choquet |first9=E. |last10=Boehler |first10=Y. |last11=Duchêne |first11=G. |last12=Perez |first12=S. |last13=Casassus |first13=S. |date=2019-08-01 |title=Kinematic detection of a planet carving a gap in a protoplanetary disk |url=https://ui.adsabs.harvard.edu/abs/2019NatAs...3.1109P |journal=Nature Astronomy |volume=3 |issue=12 |pages=1109–1114 |doi=10.1038/s41550-019-0852-6 |arxiv=1907.02538 |bibcode=2019NatAs...3.1109P |s2cid=195820690 |issn=2397-3366}}</ref>

{| class="wikitable"

|+List of confirmed protoplanets (described as "protoplanets" in literature)

!Star

!Exoplanet

!Mass

({{Jupiter mass|link=true}})

!Period

(yr)

!separation

([[Astronomical unit|AU]])

!Distance to earth

([[parsec]])

!Year of Discovery

!Detection technique

|-

| rowspan="2" |[[PDS 70]]

|PDS 70 b

|3±1

|119

|20±2

|112<ref name=":1">{{Cite journal |last=Gaia Collaboration |date=2020-11-01 |title=VizieR Online Data Catalog: Gaia EDR3 (Gaia Collaboration, 2020) |url=https://ui.adsabs.harvard.edu/abs/2020yCat.1350....0G |journal=VizieR Online Data Catalog |pages=I/350 |doi=10.26093/cds/vizier.1350 |bibcode=2020yCat.1350....0G}}</ref>

|2018<ref name=":2">{{Cite web |title=PDS 70 {{!}} NASA Exoplanet Archive |url=https://exoplanetarchive.ipac.caltech.edu/overview/PDS%2070%20b#planet_PDS-70-b_collapsible |access-date=2023-03-01 |website=exoplanetarchive.ipac.caltech.edu}}</ref>

|Direct Imaging

|-

|PDS 70 c

|8±4

|227<ref name=":0">{{Cite web |title=Orbital Period Calculator {{!}} Binary System |url=https://www.omnicalculator.com/physics/orbital-period |access-date=2023-03-01 |website=www.omnicalculator.com |language=en}}</ref>

|{{Val|34|6|3}}

|112

|2019<ref name=":2" />

|Direct Imaging

|-

|[[HD 97048]]

|HD 97048 b

|2.5±0.5

|956<ref name=":0" />

|130

|184<ref name=":1" />

|2019<ref>{{Cite web |title=HD 97048 {{!}} NASA Exoplanet Archive |url=https://exoplanetarchive.ipac.caltech.edu/overview/HD%2097048%20b#planet_HD-97048-b_collapsible |access-date=2023-03-01 |website=exoplanetarchive.ipac.caltech.edu}}</ref>

|Disk Kinematics

|-

|[[HD 169142]]

|HD 169142 b

|3±2

|167<ref name=":0" />

|37.2±1.5

|114

|2014<ref>{{Cite journal |last1=Reggiani |first1=Maddalena |last2=Quanz |first2=Sascha P. |last3=Meyer |first3=Michael R. |last4=Pueyo |first4=Laurent |last5=Absil |first5=Olivier |last6=Amara |first6=Adam |last7=Anglada |first7=Guillem |last8=Avenhaus |first8=Henning |last9=Girard |first9=Julien H. |last10=Carrasco Gonzalez |first10=Carlos |last11=Graham |first11=James |last12=Mawet |first12=Dimitri |last13=Meru |first13=Farzana |last14=Milli |first14=Julien |last15=Osorio |first15=Mayra |date=2014-09-01 |title=Discovery of a Companion Candidate in the HD 169142 Transition Disk and the Possibility of Multiple Planet Formation |url=https://ui.adsabs.harvard.edu/abs/2014ApJ...792L..23R |journal=The Astrophysical Journal |volume=792 |issue=1 |pages=L23 |arxiv=1408.0813 |bibcode=2014ApJ...792L..23R |doi=10.1088/2041-8205/792/1/L23 |issn=0004-637X |s2cid=37427761}}</ref>/2023<ref>{{Cite web |title=HD 169142 {{!}} NASA Exoplanet Archive |url=https://exoplanetarchive.ipac.caltech.edu/overview/HD%20169142 |access-date=2023-04-11 |website=exoplanetarchive.ipac.caltech.edu}}</ref>

|Direct imaging<ref name=":5">{{Cite journal |last1=Hammond |first1=Iain |last2=Christiaens |first2=Valentin |last3=Price |first3=Daniel J. |last4=Toci |first4=Claudia |last5=Pinte |first5=Christophe |last6=Juillard |first6=Sandrine |last7=Garg |first7=Himanshi |date=2023-02-01 |title=Confirmation and Keplerian motion of the gap-carving protoplanet HD 169142 b |url=https://ui.adsabs.harvard.edu/abs/2023arXiv230211302H |journal=Monthly Notices of the Royal Astronomical Society |volume=522 |issue=1 |pages=L51–L55 |arxiv=2302.11302 |bibcode=2023MNRAS.522L..51H |doi=10.1093/mnrasl/slad027}}</ref>

|}


=== Unconfirmed protoplanets ===

The confident detection of protoplanets is difficult. Protoplanets usually exist in gas-rich protoplanetary disks. Such disks can produce over-densities by a process called disk fragmentation. Such fragments can be small enough to be unresolved and mimic the appearance of a protoplanet.<ref>{{Cite journal |last1=Teague |first1=Richard |last2=Jankovic |first2=Marija R. |last3=Haworth |first3=Thomas J. |last4=Qi |first4=Chunhua |last5=Ilee |first5=John D. |date=2020-06-01 |title=A three-dimensional view of Gomez's hamburger |url=https://ui.adsabs.harvard.edu/abs/2020MNRAS.495..451T |journal=Monthly Notices of the Royal Astronomical Society |volume=495 |issue=1 |pages=451–459 |doi=10.1093/mnras/staa1167 |arxiv=2003.02061 |bibcode=2020MNRAS.495..451T |issn=0035-8711}}</ref> A number of unconfirmed protoplanet candidates are known and some detections were later questioned.

{| class="wikitable"

|+List of unconfirmed/disputed/refuted protoplanets

!Star

!Exoplanet

!Mass

({{Jupiter mass|link=true}})

!Period

(yr)

!separation

([[Astronomical unit|AU]])

!Distance to earth

([[parsec]])

!Year of Discovery

!disputed/

unconfirmed/

refuted

!Detection technique

|-

| rowspan="3" |[[LkCa 15]]

|LkCa 15 b

|

|

|12.7

|

|2012<ref>{{Cite journal |last1=Kraus |first1=Adam L. |last2=Ireland |first2=Michael J. |date=2012-01-01 |title=LkCa 15: A Young Exoplanet Caught at Formation? |url=https://ui.adsabs.harvard.edu/abs/2012ApJ...745....5K |journal=The Astrophysical Journal |volume=745 |issue=1 |pages=5 |doi=10.1088/0004-637X/745/1/5 |arxiv=1110.3808 |bibcode=2012ApJ...745....5K |issn=0004-637X}}</ref>

| rowspan="3" |refuted in 2019<ref>{{Cite journal |last1=Currie |first1=Thayne |last2=Marois |first2=Christian |last3=Cieza |first3=Lucas |last4=Mulders |first4=Gijs D. |last5=Lawson |first5=Kellen |last6=Caceres |first6=Claudio |last7=Rodriguez-Ruiz |first7=Dary |last8=Wisniewski |first8=John |last9=Guyon |first9=Olivier |last10=Brandt |first10=Timothy D. |last11=Kasdin |first11=N. Jeremy |last12=Groff |first12=Tyler D. |last13=Lozi |first13=Julien |last14=Chilcote |first14=Jeffrey |last15=Hodapp |first15=Klaus |date=2019-05-01 |title=No Clear, Direct Evidence for Multiple Protoplanets Orbiting LkCa 15: LkCa 15 bcd are Likely Inner Disk Signals |journal=The Astrophysical Journal |volume=877 |issue=1 |pages=L3 |doi=10.3847/2041-8213/ab1b42 |doi-access=free |arxiv=1905.04322 |bibcode=2019ApJ...877L...3C |issn=0004-637X}}</ref>

|Direct imaging

|-

|LkCa 15 c

|

|

|18.6

|

|2015<ref name=":6">{{Cite journal |last1=Sallum |first1=S. |last2=Follette |first2=K. B. |last3=Eisner |first3=J. A. |last4=Close |first4=L. M. |last5=Hinz |first5=P. |last6=Kratter |first6=K. |last7=Males |first7=J. |last8=Skemer |first8=A. |last9=Macintosh |first9=B. |last10=Tuthill |first10=P. |last11=Bailey |first11=V. |last12=Defrère |first12=D. |last13=Morzinski |first13=K. |last14=Rodigas |first14=T. |last15=Spalding |first15=E. |date=2015-11-01 |title=Accreting protoplanets in the LkCa 15 transition disk |url=https://ui.adsabs.harvard.edu/abs/2015Natur.527..342S |journal=Nature |volume=527 |issue=7578 |pages=342–344 |doi=10.1038/nature15761 |pmid=26581290 |arxiv=1511.07456 |bibcode=2015Natur.527..342S |s2cid=916170 |issn=0028-0836}}</ref>

|Direct imaging

|-

|LkCa 15 d

|

|

|24.7

|

|2015<ref name=":6" />

|Direct imaging

|-

|[[HD 100546]]

|HD 100546 b

|4-13<ref>{{Cite journal |last1=Quanz |first1=Sascha P. |last2=Amara |first2=Adam |last3=Meyer |first3=Michael R. |last4=Girard |first4=Julien H. |last5=Kenworthy |first5=Matthew A. |last6=Kasper |first6=Markus |date=2015-07-01 |title=Confirmation and Characterization of the Protoplanet HD 100546 b—Direct Evidence for Gas Giant Planet Formation at 50 AU |url=https://ui.adsabs.harvard.edu/abs/2015ApJ...807...64Q |journal=The Astrophysical Journal |volume=807 |issue=1 |pages=64 |arxiv=1412.5173 |bibcode=2015ApJ...807...64Q |doi=10.1088/0004-637X/807/1/64 |hdl=1887/48578 |issn=0004-637X |s2cid=119119314}}</ref>

|249<ref name=":0" />

|53±2

|108<ref name=":1" />

|2015<ref>{{Cite web |title=HD 100546 {{!}} NASA Exoplanet Archive |url=https://exoplanetarchive.ipac.caltech.edu/overview/HD%20100546%20b#planet_HD-100546-b_collapsible |access-date=2023-03-01 |website=exoplanetarchive.ipac.caltech.edu}}</ref>

|disputed in 2017<ref>{{Cite journal |last1=Rameau |first1=Julien |last2=Follette |first2=Katherine B. |last3=Pueyo |first3=Laurent |last4=Marois |first4=Christian |last5=Macintosh |first5=Bruce |last6=Millar-Blanchaer |first6=Maxwell |last7=Wang |first7=Jason J. |last8=Vega |first8=David |last9=Doyon |first9=René |last10=Lafrenière |first10=David |last11=Nielsen |first11=Eric L. |last12=Bailey |first12=Vanessa |last13=Chilcote |first13=Jeffrey K. |last14=Close |first14=Laird M. |last15=Esposito |first15=Thomas M. |date=2017-06-01 |title=An Optical/Near-infrared Investigation of HD 100546 b with the Gemini Planet Imager and MagAO |journal=The Astronomical Journal |volume=153 |issue=6 |pages=244 |arxiv=1704.06317 |bibcode=2017AJ....153..244R |doi=10.3847/1538-3881/aa6cae |issn=0004-6256 |s2cid=19100982 |doi-access=free}}</ref>

|Direct imaging

|-

|[[AB Aurigae]]

|[[AB Aurigae b|AB Aur b]]

|9

|

|94±49

|156<ref name=":1" />

|2022<ref>{{Cite web |title=AB Aur {{!}} NASA Exoplanet Archive |url=https://exoplanetarchive.ipac.caltech.edu/overview/AB%20Aur%20b#planet_AB-Aur-b_collapsible |access-date=2023-03-01 |website=exoplanetarchive.ipac.caltech.edu}}</ref>

|disputed in 2023<ref>{{Cite journal |last1=Zhou |first1=Yifan |last2=Bowler |first2=Brendan P. |last3=Yang |first3=Haifeng |last4=Sanghi |first4=Aniket |last5=Herczeg |first5=Gregory J. |last6=Kraus |first6=Adam L. |last7=Bae |first7=Jaehan |last8=Long |first8=Feng |last9=Follette |first9=Katherine B. |last10=Ward-Duong |first10=Kimberley |last11=Zhu |first11=Zhaohuan |last12=Biddle |first12=Lauren I. |last13=Close |first13=Laird M. |last14=Yushu Jiang |first14=Lillian |last15=Wu |first15=Ya-Lin |date=30 Aug 2023 |title=UV-Optical Emission of AB Aur b is Consistent with Scattered Stellar Light |journal=Astrophysical Journal |volume=166 |issue=6 |pages=11 |arxiv=2308.16223 |bibcode=2023AJ....166..220Z |doi=10.3847/1538-3881/acf9ec |doi-access=free}}</ref> and 2024<ref>{{Cite journal |last1=Biddle |first1=Lauren I. |last2=Bowler |first2=Brendan P. |last3=Zhou |first3=Yifan |last4=Franson |first4=Kyle |last5=Zhang |first5=Zhoujian |date=2024-04-01 |title=Deep Paβ Imaging of the Candidate Accreting Protoplanet AB Aur b |journal=The Astronomical Journal |volume=167 |issue=4 |pages=172 |arxiv=2402.12601 |bibcode=2024AJ....167..172B |doi=10.3847/1538-3881/ad2a52 |doi-access=free |issn=0004-6256}}</ref>

|Direct imaging

|-

|[[Gomez's Hamburger]]

|GoHam b

|0.8-11.4

|

|350±50

|250

|2015<ref>{{Cite journal |last1=Berné |first1=O. |last2=Fuente |first2=A. |last3=Pantin |first3=E. |last4=Bujarrabal |first4=V. |last5=Baruteau |first5=C. |last6=Pilleri |first6=P. |last7=Habart |first7=E. |last8=Ménard |first8=F. |last9=Cernicharo |first9=J. |last10=Tielens |first10=A. G. G. M. |last11=Joblin |first11=C. |date=2015-06-01 |title=Very Large Telescope observations of Gomez's Hamburger: Insights into a young protoplanet candidate |url=https://ui.adsabs.harvard.edu/abs/2015A&A...578L...8B |journal=Astronomy and Astrophysics |volume=578 |pages=L8 |doi=10.1051/0004-6361/201526041 |arxiv=1504.02735 |bibcode=2015A&A...578L...8B |issn=0004-6361}}</ref>

|unconfirmed candidate

|Direct imaging

|-

|[[IM Lupi]]

|

|2-3

|

|110

|

|2022<ref>{{Cite journal |last1=Verrios |first1=Harrison J. |last2=Price |first2=Daniel J. |last3=Pinte |first3=Christophe |last4=Hilder |first4=Thomas |last5=Calcino |first5=Josh |date=2022-07-01 |title=Kinematic Evidence for an Embedded Planet in the IM Lupi Disk |journal=The Astrophysical Journal |volume=934 |issue=1 |pages=L11 |arxiv=2207.02869 |bibcode=2022ApJ...934L..11V |doi=10.3847/2041-8213/ac7f44 |issn=0004-637X |doi-access=free}}</ref>

|unconfirmed candidate

|Disk Kinematics

|-

|[[HD 163296]]

|multiple?<ref>{{Cite journal |last1=Kanagawa |first1=Kazuhiro D. |last2=Ono |first2=Tomohiro |last3=Momose |first3=Munetake |date=2023-12-01 |title=Kinematic signatures of a low-mass planet with a moderately inclined orbit in a protoplanetary disk |url=https://ui.adsabs.harvard.edu/abs/2023PASJ...75.1105K |journal=Publications of the Astronomical Society of Japan |volume=75 |issue=6 |pages=1105–1123 |doi=10.1093/pasj/psad059 |arxiv=2308.12144 |bibcode=2023PASJ...75.1105K |issn=0004-6264}}</ref>

|

|

|

|

|2022<ref name=":4">{{Cite journal |last1=Calcino |first1=Josh |last2=Hilder |first2=Thomas |last3=Price |first3=Daniel J. |last4=Pinte |first4=Christophe |last5=Bollati |first5=Francesco |last6=Lodato |first6=Giuseppe |last7=Norfolk |first7=Brodie J. |date=2022-04-01 |title=Mapping the Planetary Wake in HD 163296 with Kinematics |journal=The Astrophysical Journal |volume=929 |issue=2 |pages=L25 |arxiv=2111.07416 |bibcode=2022ApJ...929L..25C |doi=10.3847/2041-8213/ac64a7 |issn=0004-637X |s2cid=244117638 |doi-access=free}}</ref>

|unconfirmed candidates

|Disk Kinematics

|-

|[[Elias 2-27|Elias 2-24]]

|

|2-5

|

|52

|

|2023<ref>{{Cite journal |last1=Pinte |first1=C. |last2=Hammond |first2=I. |last3=Price |first3=D. J. |last4=Christiaens |first4=V. |last5=Andrews |first5=S. M. |last6=Chauvin |first6=G. |last7=Pérez |first7=L. M. |last8=Jorquera |first8=S. |last9=Garg |first9=H. |last10=Norfolk |first10=B. J. |last11=Calcino |first11=J. |last12=Bonnefoy |first12=M. |date=2023-11-01 |title=Kinematic and thermal signatures of the directly imaged protoplanet candidate around Elias 2-24 |url=https://ui.adsabs.harvard.edu/abs/2023MNRAS.526L..41P |journal=Monthly Notices of the Royal Astronomical Society |volume=526 |issue=1 |pages=L41–L46 |doi=10.1093/mnrasl/slad010 |arxiv=2301.08759 |bibcode=2023MNRAS.526L..41P |issn=0035-8711}}</ref>

|unconfirmed candidate

|Direct imaging + Disk Kinematics

|}


==See also==

* [[Accretion (astrophysics)]]

* [[Fusor (astronomy)]]

* [[Mesoplanet]]

* [[Planetesimal]]



==References==

==References==

{{reflist}}

{{reflist}}



== External links ==

{{astronomy-stub}}

*[https://archive.today/20130105085824/http://tech.groups.yahoo.com/group/mpml/message/25780 Thread on the definition of a protoplanet] (Minor Planet Mailing List : July 15, 2011)



{{Exoplanet}}

{{Portal bar|Astronomy|Stars|Spaceflight|Outer space|Solar System}}

[[Category:Protoplanets| ]]

[[Category:Types of planet]]

[[Category:Types of planet]]


[[de:Protoplanet]]

[[es:Protoplaneta]]

[[fr:Protoplanète]]

[[it:Protopianeta]]

[[lt:Proplaneta]]

[[pl:Protoplaneta]]

[[pt:Protoplaneta]]

[[sk:Protoplanéta]]

[[fi:Protoplaneetta]]

[[sv:Protoplanet]]

[[zh:原行星]]


Latest revision as of 20:57, 1 June 2024

A surviving protoplanet, Vesta

Aprotoplanet is a large planetary embryo that originated within a protoplanetary disk and has undergone internal melting to produce a differentiated interior. Protoplanets are thought to form out of kilometer-sized planetesimals that gravitationally perturb each other's orbits and collide, gradually coalescing into the dominant planets.

The planetesimal hypothesis[edit]

Aplanetesimal is an object formed from dust, rock, and other materials, measuring from meters to hundreds of kilometers in size. According to the Chamberlin–Moulton planetesimal hypothesis and the theories of Viktor Safronov, a protoplanetary disk of materials such as gas and dust would orbit a star early in the formation of a planetary system. The action of gravity on such materials form larger and larger chunks until some reach the size of planetesimals.[1][2]

It is thought that the collisions of planetesimals created a few hundred larger planetary embryos. Over the course of hundreds of millions of years, they collided with one another. The exact sequence whereby planetary embryos collided to assemble the planets is not known, but it is thought that initial collisions would have replaced the first "generation" of embryos with a second generation consisting of fewer but larger embryos. These in their turn would have collided to create a third generation of fewer but even larger embryos. Eventually, only a handful of embryos were left, which collided to complete the assembly of the planets proper.[3]

Early protoplanets had more radioactive elements,[4] the quantity of which has been reduced over time due to radioactive decay. Heating due to radioactivity, impact, and gravitational pressure melted parts of protoplanets as they grew toward being planets. In melted zones their heavier elements sank to the center, whereas lighter elements rose to the surface. Such a process is known as planetary differentiation. The composition of some meteorites show that differentiation took place in some asteroids.

Evidence in the Solar System[edit]

In the case of the Solar System, it is thought that the collisions of planetesimals created a few hundred planetary embryos. Such embryos were similar to Ceres and Pluto with masses of about 1022 to 1023 kg and were a few thousand kilometers in diameter.[citation needed]

According to the giant impact hypothesis, the Moon formed from a colossal impact of a hypothetical protoplanet called Theia with Earth, early in the Solar System's history.[citation needed]

In the inner Solar System, the three protoplanets to survive more-or-less intact are the asteroids Ceres, Pallas, and Vesta. Psyche is likely the survivor of a violent hit-and-run with another object that stripped off the outer, rocky layers of a protoplanet.[5] The asteroid Metis may also have a similar origin history to that of Psyche.[6] The asteroid Lutetia also has characteristics that resemble a protoplanet.[7][8] Kuiper-belt dwarf planets have also been referred to as protoplanets.[9] Because iron meteorites have been found on Earth, it is deemed likely that there once were other metal-cored protoplanets in the asteroid belt that since have been disrupted and that are the source of these meteorites.[citation needed]

Extrasolar protoplanets[edit]

In February 2013 astronomers made the first direct observation of a candidate protoplanet forming in a disk of gas and dust around a distant star, HD 100546.[10][11] Subsequent observations suggest that several protoplanets may be present in the gas disk.[12]

Another protoplanet, AB Aur b, may be in the earliest observed stage of formation for a gas giant. It is located in the gas disk of the star AB Aurigae. AB Aur b is among the largest exoplanets identified, and has a distant orbit, three times as far as Neptune is from the Earth's sun. Observations of AB Aur b may challenge conventional thinking about how planets are formed. It was viewed by the Subaru Telescope and the Hubble Space Telescope.[13]

Rings, gaps, spirals, dust concentrations and shadows in protoplanetary disks could be caused by protoplanets. These structures are not completely understood and are therefore not seen as a proof for the presence of a protoplanet.[14] One new emerging way to study the effect of protoplanets on the disk are molecular line observations of protoplanetary disks in the form of gas velocity maps.[14] HD 97048 b is the first protoplanet detected by disk kinematics in the form of a kink in the gas velocity map.[15]

List of confirmed protoplanets (described as "protoplanets" in literature)
Star Exoplanet Mass

(MJ)

Period

(yr)

separation

(AU)

Distance to earth

(parsec)

Year of Discovery Detection technique
PDS 70 PDS 70 b 3±1 119 20±2 112[16] 2018[17] Direct Imaging
PDS 70 c 8±4 227[18] 34+6
−3
112 2019[17] Direct Imaging
HD 97048 HD 97048 b 2.5±0.5 956[18] 130 184[16] 2019[19] Disk Kinematics
HD 169142 HD 169142 b 3±2 167[18] 37.2±1.5 114 2014[20]/2023[21] Direct imaging[22]

Unconfirmed protoplanets[edit]

The confident detection of protoplanets is difficult. Protoplanets usually exist in gas-rich protoplanetary disks. Such disks can produce over-densities by a process called disk fragmentation. Such fragments can be small enough to be unresolved and mimic the appearance of a protoplanet.[23] A number of unconfirmed protoplanet candidates are known and some detections were later questioned.

List of unconfirmed/disputed/refuted protoplanets
Star Exoplanet Mass

(MJ)

Period

(yr)

separation

(AU)

Distance to earth

(parsec)

Year of Discovery disputed/

unconfirmed/ refuted

Detection technique
LkCa 15 LkCa 15 b 12.7 2012[24] refuted in 2019[25] Direct imaging
LkCa 15 c 18.6 2015[26] Direct imaging
LkCa 15 d 24.7 2015[26] Direct imaging
HD 100546 HD 100546 b 4-13[27] 249[18] 53±2 108[16] 2015[28] disputed in 2017[29] Direct imaging
AB Aurigae AB Aur b 9 94±49 156[16] 2022[30] disputed in 2023[31] and 2024[32] Direct imaging
Gomez's Hamburger GoHam b 0.8-11.4 350±50 250 2015[33] unconfirmed candidate Direct imaging
IM Lupi 2-3 110 2022[34] unconfirmed candidate Disk Kinematics
HD 163296 multiple?[35] 2022[36] unconfirmed candidates Disk Kinematics
Elias 2-24 2-5 52 2023[37] unconfirmed candidate Direct imaging + Disk Kinematics

See also[edit]

References[edit]

  1. ^ Cessna, Abby (26 July 2009). "Planetesimals". Universe Today. Retrieved 5 April 2022.
  • ^ Ahrens, T J (1 May 1993). "Impact Erosion of Terrestrial Planetary Atmospheres". Annual Review of Earth and Planetary Sciences. 21 (1): 525–555. Bibcode:1993AREPS..21..525A. doi:10.1146/annurev.ea.21.050193.002521. hdl:2060/19920021677. ISSN 0084-6597. Retrieved 5 April 2022.
  • ^ McBride, Neil; Iain Gilmour; Philip A. Bland; Elaine A. Moore; Mike Widdowson; Ian Wright (2004). An Introduction to the Solar System. Cambridge: Cambridge University Press. p. 56. ISBN 9780521837354.
  • ^ Cessna, Abby (2009). "Protoplanets". Universe Today.
  • ^ "NASA Selects Investigations for Future Key Planetary Mission". 30 September 2015.
  • ^ Kelley, Michael S; Michael J. Gaffey (2000). "9 Metis and 113 Amalthea: A Genetic Asteroid Pair". Icarus. 144 (1): 27–38. Bibcode:2000Icar..144...27K. doi:10.1006/icar.1999.6266.
  • ^ "BIG PIC: 2 Pallas, the Asteroid with Protoplanetary Attitude". Discovery Space. Discovery Communications. 2009-10-08. Retrieved 2009-10-08.
  • ^ Klotz, Irene (2011-10-27). "ASTEROID FAILS TO MAKE IT BIG: A newly studied asteroid is actually a planetary building block that stopped growing". Discovery News. Discovery Communications. Retrieved 2011-10-27.
  • ^ Alan Boyle (2009-10-08). "Protoplanet frozen in time". MSNBC. Archived from the original on 2009-10-10. Retrieved 2009-09-12.
  • ^ "The Birth of a Giant Planet?". European Southern Observatory. 28 February 2013. Retrieved 2 March 2013.
  • ^ Quanz, Sasch P.; Amara, Adam; Meyer, Michael P.; Kenworthy, Matthew P.; et al. (2013). "A young protoplanet candidate embedded in the circumstellar disk of HD 100546". Astrophysical Journal. 766 (1). L1. arXiv:1302.7122. Bibcode:2013ApJ...766L...1Q. doi:10.1088/2041-8205/766/1/l1. S2CID 56140977.
  • ^ Garufi, A.; Quanz, S. P.; Schmid, H. M.; Mulders, G. D.; Avenhaus, H.; Boccaletti, A.; Ginski, C.; Langlois, M.; Stolker, T.; Augereau, J.-C.; Benisty, M.; Lopez, B.; Dominik, C.; Gratton, R.; Henning, T.; Janson, M.; Ménard, F.; Meyer, M. R.; Pinte, C.; Sissa, E.; Vigan, A.; Zurlo, A.; Bazzon, A.; Buenzli, E.; Bonnefoy, M.; Brandner, W.; Chauvin, G.; Cheetham, A.; Cudel, M.; Desidera, S.; Feldt, M.; Galicher, R.; Kasper, M.; Lagrange, A.-M.; Lannier, J.; Maire, A. L.; Mesa, D.; Mouillet, D.; Peretti, S.; Perrot, C.; Salter, G.; Wildi, F. (April 2016). "The SPHERE view of the planet-forming disk around HD 100546". Astronomy & Astrophysics. 588: A8. arXiv:1601.04983. Bibcode:2016A&A...588A...8G. doi:10.1051/0004-6361/201527940. ISSN 0004-6361. Retrieved 5 April 2022.
  • ^ "Gigantic Jupiter-like alien planet observed still 'in the womb'". CBC News. April 5, 2022. Retrieved 5 April 2022.
  • ^ a b Pinte, Christophe; Teague, Richard; Flaherty, Kevin; Hall, Cassandra; Facchini, Stefano; Casassus, Simon (2022-03-01). "Kinematic Structures in Planet-Forming Disks". Protostars and Planets VII. 534: 645. arXiv:2203.09528. Bibcode:2023ASPC..534..645P.
  • ^ Pinte, C.; van der Plas, G.; Ménard, F.; Price, D. J.; Christiaens, V.; Hill, T.; Mentiplay, D.; Ginski, C.; Choquet, E.; Boehler, Y.; Duchêne, G.; Perez, S.; Casassus, S. (2019-08-01). "Kinematic detection of a planet carving a gap in a protoplanetary disk". Nature Astronomy. 3 (12): 1109–1114. arXiv:1907.02538. Bibcode:2019NatAs...3.1109P. doi:10.1038/s41550-019-0852-6. ISSN 2397-3366. S2CID 195820690.
  • ^ a b c d Gaia Collaboration (2020-11-01). "VizieR Online Data Catalog: Gaia EDR3 (Gaia Collaboration, 2020)". VizieR Online Data Catalog: I/350. Bibcode:2020yCat.1350....0G. doi:10.26093/cds/vizier.1350.
  • ^ a b "PDS 70 | NASA Exoplanet Archive". exoplanetarchive.ipac.caltech.edu. Retrieved 2023-03-01.
  • ^ a b c d "Orbital Period Calculator | Binary System". www.omnicalculator.com. Retrieved 2023-03-01.
  • ^ "HD 97048 | NASA Exoplanet Archive". exoplanetarchive.ipac.caltech.edu. Retrieved 2023-03-01.
  • ^ Reggiani, Maddalena; Quanz, Sascha P.; Meyer, Michael R.; Pueyo, Laurent; Absil, Olivier; Amara, Adam; Anglada, Guillem; Avenhaus, Henning; Girard, Julien H.; Carrasco Gonzalez, Carlos; Graham, James; Mawet, Dimitri; Meru, Farzana; Milli, Julien; Osorio, Mayra (2014-09-01). "Discovery of a Companion Candidate in the HD 169142 Transition Disk and the Possibility of Multiple Planet Formation". The Astrophysical Journal. 792 (1): L23. arXiv:1408.0813. Bibcode:2014ApJ...792L..23R. doi:10.1088/2041-8205/792/1/L23. ISSN 0004-637X. S2CID 37427761.
  • ^ "HD 169142 | NASA Exoplanet Archive". exoplanetarchive.ipac.caltech.edu. Retrieved 2023-04-11.
  • ^ Hammond, Iain; Christiaens, Valentin; Price, Daniel J.; Toci, Claudia; Pinte, Christophe; Juillard, Sandrine; Garg, Himanshi (2023-02-01). "Confirmation and Keplerian motion of the gap-carving protoplanet HD 169142 b". Monthly Notices of the Royal Astronomical Society. 522 (1): L51–L55. arXiv:2302.11302. Bibcode:2023MNRAS.522L..51H. doi:10.1093/mnrasl/slad027.
  • ^ Teague, Richard; Jankovic, Marija R.; Haworth, Thomas J.; Qi, Chunhua; Ilee, John D. (2020-06-01). "A three-dimensional view of Gomez's hamburger". Monthly Notices of the Royal Astronomical Society. 495 (1): 451–459. arXiv:2003.02061. Bibcode:2020MNRAS.495..451T. doi:10.1093/mnras/staa1167. ISSN 0035-8711.
  • ^ Kraus, Adam L.; Ireland, Michael J. (2012-01-01). "LkCa 15: A Young Exoplanet Caught at Formation?". The Astrophysical Journal. 745 (1): 5. arXiv:1110.3808. Bibcode:2012ApJ...745....5K. doi:10.1088/0004-637X/745/1/5. ISSN 0004-637X.
  • ^ Currie, Thayne; Marois, Christian; Cieza, Lucas; Mulders, Gijs D.; Lawson, Kellen; Caceres, Claudio; Rodriguez-Ruiz, Dary; Wisniewski, John; Guyon, Olivier; Brandt, Timothy D.; Kasdin, N. Jeremy; Groff, Tyler D.; Lozi, Julien; Chilcote, Jeffrey; Hodapp, Klaus (2019-05-01). "No Clear, Direct Evidence for Multiple Protoplanets Orbiting LkCa 15: LkCa 15 bcd are Likely Inner Disk Signals". The Astrophysical Journal. 877 (1): L3. arXiv:1905.04322. Bibcode:2019ApJ...877L...3C. doi:10.3847/2041-8213/ab1b42. ISSN 0004-637X.
  • ^ a b Sallum, S.; Follette, K. B.; Eisner, J. A.; Close, L. M.; Hinz, P.; Kratter, K.; Males, J.; Skemer, A.; Macintosh, B.; Tuthill, P.; Bailey, V.; Defrère, D.; Morzinski, K.; Rodigas, T.; Spalding, E. (2015-11-01). "Accreting protoplanets in the LkCa 15 transition disk". Nature. 527 (7578): 342–344. arXiv:1511.07456. Bibcode:2015Natur.527..342S. doi:10.1038/nature15761. ISSN 0028-0836. PMID 26581290. S2CID 916170.
  • ^ Quanz, Sascha P.; Amara, Adam; Meyer, Michael R.; Girard, Julien H.; Kenworthy, Matthew A.; Kasper, Markus (2015-07-01). "Confirmation and Characterization of the Protoplanet HD 100546 b—Direct Evidence for Gas Giant Planet Formation at 50 AU". The Astrophysical Journal. 807 (1): 64. arXiv:1412.5173. Bibcode:2015ApJ...807...64Q. doi:10.1088/0004-637X/807/1/64. hdl:1887/48578. ISSN 0004-637X. S2CID 119119314.
  • ^ "HD 100546 | NASA Exoplanet Archive". exoplanetarchive.ipac.caltech.edu. Retrieved 2023-03-01.
  • ^ Rameau, Julien; Follette, Katherine B.; Pueyo, Laurent; Marois, Christian; Macintosh, Bruce; Millar-Blanchaer, Maxwell; Wang, Jason J.; Vega, David; Doyon, René; Lafrenière, David; Nielsen, Eric L.; Bailey, Vanessa; Chilcote, Jeffrey K.; Close, Laird M.; Esposito, Thomas M. (2017-06-01). "An Optical/Near-infrared Investigation of HD 100546 b with the Gemini Planet Imager and MagAO". The Astronomical Journal. 153 (6): 244. arXiv:1704.06317. Bibcode:2017AJ....153..244R. doi:10.3847/1538-3881/aa6cae. ISSN 0004-6256. S2CID 19100982.
  • ^ "AB Aur | NASA Exoplanet Archive". exoplanetarchive.ipac.caltech.edu. Retrieved 2023-03-01.
  • ^ Zhou, Yifan; Bowler, Brendan P.; Yang, Haifeng; Sanghi, Aniket; Herczeg, Gregory J.; Kraus, Adam L.; Bae, Jaehan; Long, Feng; Follette, Katherine B.; Ward-Duong, Kimberley; Zhu, Zhaohuan; Biddle, Lauren I.; Close, Laird M.; Yushu Jiang, Lillian; Wu, Ya-Lin (30 Aug 2023). "UV-Optical Emission of AB Aur b is Consistent with Scattered Stellar Light". Astrophysical Journal. 166 (6): 11. arXiv:2308.16223. Bibcode:2023AJ....166..220Z. doi:10.3847/1538-3881/acf9ec.
  • ^ Biddle, Lauren I.; Bowler, Brendan P.; Zhou, Yifan; Franson, Kyle; Zhang, Zhoujian (2024-04-01). "Deep Paβ Imaging of the Candidate Accreting Protoplanet AB Aur b". The Astronomical Journal. 167 (4): 172. arXiv:2402.12601. Bibcode:2024AJ....167..172B. doi:10.3847/1538-3881/ad2a52. ISSN 0004-6256.
  • ^ Berné, O.; Fuente, A.; Pantin, E.; Bujarrabal, V.; Baruteau, C.; Pilleri, P.; Habart, E.; Ménard, F.; Cernicharo, J.; Tielens, A. G. G. M.; Joblin, C. (2015-06-01). "Very Large Telescope observations of Gomez's Hamburger: Insights into a young protoplanet candidate". Astronomy and Astrophysics. 578: L8. arXiv:1504.02735. Bibcode:2015A&A...578L...8B. doi:10.1051/0004-6361/201526041. ISSN 0004-6361.
  • ^ Verrios, Harrison J.; Price, Daniel J.; Pinte, Christophe; Hilder, Thomas; Calcino, Josh (2022-07-01). "Kinematic Evidence for an Embedded Planet in the IM Lupi Disk". The Astrophysical Journal. 934 (1): L11. arXiv:2207.02869. Bibcode:2022ApJ...934L..11V. doi:10.3847/2041-8213/ac7f44. ISSN 0004-637X.
  • ^ Kanagawa, Kazuhiro D.; Ono, Tomohiro; Momose, Munetake (2023-12-01). "Kinematic signatures of a low-mass planet with a moderately inclined orbit in a protoplanetary disk". Publications of the Astronomical Society of Japan. 75 (6): 1105–1123. arXiv:2308.12144. Bibcode:2023PASJ...75.1105K. doi:10.1093/pasj/psad059. ISSN 0004-6264.
  • ^ Calcino, Josh; Hilder, Thomas; Price, Daniel J.; Pinte, Christophe; Bollati, Francesco; Lodato, Giuseppe; Norfolk, Brodie J. (2022-04-01). "Mapping the Planetary Wake in HD 163296 with Kinematics". The Astrophysical Journal. 929 (2): L25. arXiv:2111.07416. Bibcode:2022ApJ...929L..25C. doi:10.3847/2041-8213/ac64a7. ISSN 0004-637X. S2CID 244117638.
  • ^ Pinte, C.; Hammond, I.; Price, D. J.; Christiaens, V.; Andrews, S. M.; Chauvin, G.; Pérez, L. M.; Jorquera, S.; Garg, H.; Norfolk, B. J.; Calcino, J.; Bonnefoy, M. (2023-11-01). "Kinematic and thermal signatures of the directly imaged protoplanet candidate around Elias 2-24". Monthly Notices of the Royal Astronomical Society. 526 (1): L41–L46. arXiv:2301.08759. Bibcode:2023MNRAS.526L..41P. doi:10.1093/mnrasl/slad010. ISSN 0035-8711.
  • External links[edit]

  • icon Stars
  • Spaceflight
  • Outer space
  • Solar System

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Protoplanet&oldid=1226790289"

    Categories: 
    Protoplanets
    Types of planet
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from October 2022
     



    This page was last edited on 1 June 2024, at 20:57 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki