Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition  





2 History  





3 Properties  





4 Features  





5 Candidates  



5.1  K2-18b  





5.2  Other candidates  







6 See also  





7 References  



7.1  Sources  







8 External links  














Hycean planet






Català
Deutsch
Español
فارسی
Français

Italiano


Polski
Русский
Suomi

Тоҷикӣ
Türkçe
Українська
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Artist depiction of a hycean planet.

Ahycean planet (/ˈhʃən/ HY-shən)[1] is a hypothetical type of exoplanet that features a liquid water ocean underneath a hydrogen-rich atmosphere. The term hycean is a portmanteau of hydrogen and ocean.

Definition[edit]

A hycean planet is a hypothetical typeofplanet with liquid water oceans under a hydrogen atmosphere.[2] The presence of extraterrestrial liquid water makes hycean planets regarded as promising candidates for planetary habitability.[3][4][5] They are usually considered to be larger and more massive than Earth;[6] density data imply that both rocky Super-Earths and Sub-Neptunes (like K2-18b and TOI-1231 b)[1][5] can fit this type, and it is thus expected that they will be common exoplanets.[4] As of 2023, there are no confirmed hycean planets, but the Kepler mission detected many candidates.[3]

History[edit]

The term "hycean planet" was coined in 2021 by a team of exoplanet researchers at the University of Cambridge, as a portmanteau of "hydrogen" and "ocean", used to describe planets that are thought to have large oceans and hydrogen-rich atmospheres. Hycean planets are thought to be common around red dwarf stars, and are considered to be a promising place to search for life beyond Earth. The term was first used in a paper published in The Astrophysical Journal on August 31, 2021.[7]

Life on hycean planets would probably be entirely aquatic.[8] Their water-rich compositions imply that they can have larger sizes than comparable non-hycean planets, thus making detection of biosignatures easier.[9] Hycean worlds could be investigated for biosignatures by terrestrial telescopes and space telescopes like the James Webb Space Telescope (JWST).[4][10] In 2023, the JWST investigated K2-18b and found evidence for both a hycean atmosphere and the presence of dimethyl sulfide ─ a potential biosignature.

Properties[edit]

Hycean planets could be considerably larger than previous estimates for habitable planets, with radii reaching 2.6 R🜨 (2.3 R🜨) and masses of 10 ME (5 ME).[9] Moreover, the habitable zone of such planets could be considerably larger than that of Earth-like planets. The planetary equilibrium temperature can reach 430 K (157 °C; 314 °F) for planets orbiting late M-dwarfs.[11] However, mass and radius do not by themselves inform the composition of a planet, as bodies with identical mass and radius can have distinct compositions: A given planet may thus be either a hycean planet or a super-Earth.[12]

Such planets can have many distinct atmospheric compositions and internal structures.[9] Also possible are tidally locked "dark hycean" planets (habitable only on the side of permanent night)[13] or "cold hycean" planets (with negligible irradiation, being kept warm by the greenhouse effect).[11] Dark hycean worlds can form when the atmosphere does not effectively transport heat from the permanent day side to the permanent night side,[14] thus the night side has temperate temperatures while the day side is too hot for life.[15] Cold hycean planets may exist even in the absence of stars, e.g. rogue planets.[15]

Although the presence of water may help them be habitable planets, their habitability may be limited by a possible runaway greenhouse effect. Hydrogen reacts differently to starlight's wavelengths than do heavier gases like nitrogen and oxygen. If the planet orbits a sun-like star at one Astronomical unit (AU), the temperature would be so high that the oceans would boil and water would become vapor. Current calculations locate the habitable zone where water would remain liquid at 1.6 AU, if the atmospheric pressure is similar to Earth's, or at 3.85 AU if it is the more likely tenfold to twentyfold pressure. All current hycean planet candidates are located within the area where oceans would boil, and are thus unlikely to have actual oceans of liquid water.[3] Another limiting factor is that X-ray and UV radiation from the star (especially active stars) can destroy the water molecules.[13]

Features[edit]

Hycean planets may be capable of supporting extraterrestrial life, despite their properties differing drastically from Earth's. Astronomers plan to use telescopes like the James Webb Space Telescope to search for hycean planets and to learn more about their potential for habitability.[18]

Candidates[edit]

K2-18b[edit]

One such candidate planet is K2-18b, which orbits a faint star with a period of about 33 days. This candidate planet could have liquid water, containing a considerable high amount of hydrogen gas in its atmosphere, and is far enough from its star, such that it resides within its star's habitable zone. Such candidate planets can be studied for biomarkers.[19][20] In 2023, the James Webb Space Telescope detected carbon dioxide and methane in the atmosphere of K2-18b, but it did not detect large amounts of ammonia. This supports the hypothesis that K2-18b could indeed have a water ocean. The same observations also suggest that K2-18b's atmosphere might contain dimethyl sulfide, a compound associated with life on Earth, although this has yet to be confirmed.[21] Another possibility is that K2-18b is a lava world with a hydrogen atmosphere.[22]

Other candidates[edit]

See also[edit]

References[edit]

  1. ^ a b Paul Scott Anderson (30 August 2021). "Hycean planets might be habitable ocean worlds". Earth & Sky. Retrieved 30 August 2021.
  • ^ a b Madhusudhan, Piette and Constantinou 2021, p.3
  • ^ a b c Sutter, Paul (2 May 2023). "Hycean exoplanets may not be able to support life after all". Space.com. Retrieved 5 May 2023.
  • ^ a b c Madhusudhan, Nikku; Piette, Anjali A. A.; Constantinou, Savvas (21 August 2021). "Habitability and Biosignatures of Hycean Worlds". The Astrophysical Journal. 918 (1): 1. arXiv:2108.10888. Bibcode:2021ApJ...918....1M. doi:10.3847/1538-4357/abfd9c. ISSN 0004-637X. S2CID 237290118.
  • ^ a b Davis, Nicola (30 August 2021). "'Mini-Neptunes' beyond solar system may soon yield signs of life – Cambridge astronomers identify new hycean class of habitable exoplanets, which could accelerate search for life". The Guardian. Retrieved 30 August 2021.
  • ^ a b Madhusudhan, Piette and Constantinou 2021, p.4
  • ^ Madhusudhan, Nikku; Piette, Anjali A. A.; Constantinou, Savvas (2021). "Habitability and Biosignatures of Hycean Worlds". The Astrophysical Journal. 918 (1): 1. arXiv:2108.10888. Bibcode:2021ApJ...918....1M. doi:10.3847/1538-4357/abfd9c.
  • ^ a b c Madhusudhan, Piette and Constantinou 2021, p.12
  • ^ a b c Madhusudhan et al. 2023, p.1
  • ^ Staff (27 August 2021). "Alien life could be living on big 'Hycean' exoplanets". BBC News. Retrieved 31 August 2021.
  • ^ a b Madhusudhan, Piette and Constantinou 2021, p.9
  • ^ a b c d e f g h i j k Madhusudhan, Piette and Constantinou 2021, p.6
  • ^ a b Madhusudhan, Piette and Constantinou 2021, p.5
  • ^ Madhusudhan, Piette and Constantinou 2021, p.10
  • ^ a b c Madhusudhan, Piette and Constantinou 2021, p.11
  • ^ Gargaud et al. 2011, Red Dwarf
  • ^ Petraccone, Luigi (27 November 2023). "Planetary entropy production as a thermodynamic constraint for exoplanet habitability". Monthly Notices of the Royal Astronomical Society. 527 (3): 5547–5552. doi:10.1093/mnras/stad3526.
  • ^ Darling, David. "Hycean planet". www.daviddarling.info. Retrieved 24 May 2023.
  • ^ "Hycean Planets | StarDate Online". stardate.org. Retrieved 24 May 2023.
  • ^ Piaulet, Caroline; Benneke, Björn; Almenara, Jose M.; Dragomir, Diana; Knutson, Heather A.; Thorngren, Daniel; Peterson, Merrin S.; Crossfield, Ian J. M.; M. -R. Kempton, Eliza; Kubyshkina, Daria; Howard, Andrew W.; Angus, Ruth; Isaacson, Howard; Weiss, Lauren M.; Beichman, Charles A.; Fortney, Jonathan J.; Fossati, Luca; Lammer, Helmut; McCullough, P. R.; Morley, Caroline V.; Wong, Ian (February 2023). "Evidence for the volatile-rich composition of a 1.5-Earth-radius planet". Nature Astronomy. 7 (2): 206–222. arXiv:2212.08477. Bibcode:2023NatAs...7..206P. doi:10.1038/s41550-022-01835-4. ISSN 2397-3366. S2CID 254764810.
  • ^ Yan, Isabelle (8 September 2023). "Webb Discovers Methane, Carbon Dioxide in Atmosphere of K2-18 b". NASA. Retrieved 12 September 2023.
  • ^ Shorttle, Oliver; Jordan, Sean; Nicholls, Harrison; Lichtenberg, Tim; Bower, Dan J. (February 2024). "Distinguishing Oceans of Water from Magma on Mini-Neptune K2-18b". The Astrophysical Journal Letters. 962 (1): L8. arXiv:2401.05864. Bibcode:2024ApJ...962L...8S. doi:10.3847/2041-8213/ad206e. ISSN 2041-8205.
  • ^ a b c d e f g h i j Pierrehumbert, Raymond T. (1 February 2023). "The Runaway Greenhouse on Sub-Neptune Waterworlds". The Astrophysical Journal. 944 (1): 20. arXiv:2212.02644. Bibcode:2023ApJ...944...20P. doi:10.3847/1538-4357/acafdf.
  • ^ Piaulet, Caroline; Benneke, Björn; Almenara, Jose M.; Dragomir, Diana; Knutson, Heather A.; Thorngren, Daniel; Peterson, Merrin S.; Crossfield, Ian J. M.; M.-R. Kempton, Eliza; Kubyshkina, Daria; Howard, Andrew W.; Angus, Ruth; Isaacson, Howard; Weiss, Lauren M.; Beichman, Charles A.; Fortney, Jonathan J.; Fossati, Luca; Lammer, Helmut; McCullough, P. R.; Morley, Caroline V.; Wong, Ian (15 December 2022). "Evidence for the volatile-rich composition of a 1.5-Earth-radius planet". Nature Astronomy. 7 (2): 206–222. arXiv:2212.08477. Bibcode:2023NatAs...7..206P. doi:10.1038/s41550-022-01835-4. S2CID 254764810.
  • ^ Phillips, Caprice L; Wang, Ji; Edwards, Billy; Martínez, Romy Rodríguez; Asnodkar, Anusha Pai; Gaudi, B Scott (2023). "Exploring the potential of Twinkle to unveil the nature of LTT 1445 Ab". Monthly Notices of the Royal Astronomical Society. 526 (2): 2251–2264. doi:10.1093/mnras/stad2822.
  • ^ Kawauchi, K.; Murgas, F.; Palle, E.; Narita, N.; Fukui, A.; Hirano, T.; Parviainen, H.; Ishikawa, H. T.; Watanabe, N.; Esparaza-Borges, E.; Kuzuhara, M.; Orell-Miquel, J.; Krishnamurthy, V.; Mori, M.; Kagetani, T.; Zou, Y.; Isogai, K.; Livingston, J. H.; Howell, S. B.; Crouzet, N.; Leon, J. P. de; Kimura, T.; Kodama, T.; Korth, J.; Kurita, S.; Laza-Ramos, A.; Luque, R.; Madrigal-Aguado, A.; Miyakawa, K.; Morello, G.; Nishiumi, T.; Rodríguez, G. E. F.; Sánchez-Benavente, M.; Stangret, M.; Teng, H.; Terada, Y.; Gnilka, C. L.; Guerrero, N.; Harakawa, H.; Hodapp, K.; Hori, Y.; Ikoma, M.; Jacobson, S.; Konishi, M.; Kotani, T.; Kudo, T.; Kurokowa, T.; Kusakabe, N.; Nishikawa, J.; Omiya, M.; Serizawa, T.; Tamura, M.; Ueda, A.; Vievard, S. (1 October 2022). "Validation and atmospheric exploration of the sub-Neptune TOI-2136b around a nearby M3 dwarf". Astronomy & Astrophysics. 666: A4. arXiv:2202.10182. Bibcode:2022A&A...666A...4K. doi:10.1051/0004-6361/202243381. ISSN 0004-6361. S2CID 247011479.
  • Sources[edit]

  • Madhusudhan, Nikku; Piette, Anjali A. A.; Constantinou, Savvas (1 September 2021). "Habitability and Biosignatures of Hycean Worlds". The Astrophysical Journal. 918 (1): 1. arXiv:2108.10888. Bibcode:2021ApJ...918....1M. doi:10.3847/1538-4357/abfd9c.
  • Madhusudhan, Nikku; Sarkar, Subhajit; Constantinou, Savvas; Holmberg, Måns; Piette, Anjali A. A.; Moses, Julianne I. (1 October 2023). "Carbon-bearing Molecules in a Possible Hycean Atmosphere". The Astrophysical Journal Letters. 956 (1): L13. arXiv:2309.05566. Bibcode:2023ApJ...956L..13M. doi:10.3847/2041-8213/acf577.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Hycean_planet&oldid=1230306021"

    Categories: 
    Types of planet
    Hypothetical astronomical objects
    Extraterrestrial water
    2021 neologisms
    2020s introductions
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Use dmy dates from September 2023
     



    This page was last edited on 21 June 2024, at 23:34 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki