Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Technology development  





2 Photon pressure  





3 See also  





4 References  





5 External links  














Radioisotope rocket: Difference between revisions






العربية
Español
Français
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 





Help
 

From Wikipedia, the free encyclopedia
 


Browse history interactively
 Previous edit
Content deleted Content added
Jni (talk | contribs)
21,100 edits
m full stop
m Added {{convert}}'s
 
(10 intermediate revisions by 8 users not shown)
Line 1: Line 1:

{{Refimprove|date=September 2010}}

{{Refimprove|date=September 2010}}

The '''radioisotope rocket''' is a type of [[Thermal rocket|thermal]] [[rocket engine]] that uses the heat generated by the decay of [[radioactive]] elements to heat a [[working fluid]], which is then exhausted through a rocket nozzle to produce [[thrust]]. They are similar in nature to [[Nuclear thermal rocket|nuclear thermal rockets]] such as [[NERVA]], but are considerably simpler and often have no moving parts.

A '''radioisotope rocket''' or '''radioisotope thermal rocket''' is a type of [[Thermal rocket|thermal]] [[rocket engine]] that uses the heat generated by the decay of [[radioactive]] elements to heat a [[working fluid]], which is then exhausted through a rocket nozzle to produce [[thrust]]. They are similar in nature to [[Nuclear thermal rocket|nuclear thermal rockets]] such as [[NERVA]], but are considerably simpler and often have no moving parts. Alternatively, radioisotopes may be used in a '''radioisotope electric rocket''',<ref>{{cite journal |last1=Schmidt |first1=George R. |last2=Manzella |first2=David H. |last3=Kamhawi |first3=Hani |last4=Kremic |first4=Tibor |last5=Oleson |first5=Steven R. |last6=Dankanich |first6=John W. |last7=Dudzinski |first7=Leonard A. |title=Radioisotope electric propulsion (REP): A near-term approach to nuclear propulsion |journal=Acta Astronautica |date=1 February 2010 |volume=66 |issue=3 |pages=501–507 |doi=10.1016/j.actaastro.2009.07.006 |bibcode=2010AcAau..66..501S |hdl=2060/20110016114 |hdl-access=free }}</ref> in which energy from nuclear decay is used to generate the electricity used to power an [[Spacecraft electric propulsion|electric propulsion system]].



The basic idea is a development of existing [[radioisotope thermoelectric generator]], or RTG, systems, in which the heat generated by decaying nuclear fuel is used to generate power. In the rocket application the generator is removed, and the working fluid is instead used to produce thrust directly. Temperatures of about 1500 to 2000&nbsp;°C are possible in this system, allowing for [[specific impulse]]s of about 700 to 800 seconds (7 to 8&nbsp;kN·s/kg), about double that of the best chemical engines such as the [[LH2]]-[[LOX]] [[Space Shuttle Main Engine]].

The basic idea is a development of existing [[radioisotope thermoelectric generator]], or RTG, systems, in which the heat generated by decaying nuclear fuel is used to generate power. In the rocket application the generator is removed, and the working fluid is instead used to produce thrust directly. Temperatures of about {{cvt|1500|to|2000|C|F|-2}} are possible in this system, allowing for [[specific impulse]]s of about 700 to 800&nbsp;seconds (7 to 8&nbsp;kN·s/kg), about double that of the best chemical engines such as the [[LH2]]-[[LOX]] [[Space Shuttle Main Engine]].



However the amount of power generated by such systems is typically fairly low. Whereas the full "active" reactor system in a [[nuclear thermal rocket]] can be expected to generate over a gigawatt, a radioisotope generator might get 5&nbsp;kW. This means that the design, while highly efficient, can produce thrust levels of perhaps 1.3 to 1.5&nbsp;N, making them useful only for thrusters. In order to increase the power for medium-duration missions, engines would typically use fuels with a short [[half-life]] such as [[polonium|Po-210]], as opposed to the typical RTG which would use a long half-life fuel such as [[plutonium]] in order to produce more constant power over longer periods of time. The even shorter half-life element [[fermium]] has also been suggested.<ref>[http://pdf.aiaa.org/preview/CDReadyMSPACE06_1393/PV2006_7272.pdf AIAA meeting paper comparing fermium, polonium and plutonium as power sources]{{dead link|date=November 2017 |bot=InternetArchiveBot |fix-attempted=yes }}</ref>

However the amount of power generated by such systems is typically fairly low. Whereas the full "active" reactor system in a [[nuclear thermal rocket]] can be expected to generate over a gigawatt, a radioisotope generator might get 5&nbsp;kW. This means that the design, while highly efficient, can produce thrust levels of perhaps {{cvt|1.3|to|1.5|N|lbf}}, making them useful only for thrusters. In order to increase the power for medium-duration missions, engines would typically use fuels with a short [[half-life]] such as [[polonium-210]], as opposed to the typical RTG which would use a long half-life fuel such as [[plutonium-238]] in order to produce more constant power over longer periods of time.<ref>[http://pdf.aiaa.org/preview/CDReadyMSPACE06_1393/PV2006_7272.pdf AIAA meeting paper comparing fermium, polonium and plutonium as power sources]{{dead link|date=November 2017 |bot=InternetArchiveBot |fix-attempted=yes }}</ref>



Another drawback to the use of radioisotopes in rockets is an inability to change the operating power. The radioisotope constantly generates heat that must be safely dissipated when it is not heating a propellant. Reactors, on the other hand, can be throttled or shut down as desired.

Another drawback to the use of radioisotopes in rockets is an inability to change the operating power. The radioisotope constantly generates heat that must be safely dissipated when it is not heating a propellant. Reactors, on the other hand, can be throttled or shut down as desired.



==Technology Development==

==Technology development==



[[TRW Inc.|TRW]] maintained a fairly active development program known as '''Poodle''' from 1961 to 1965, and today the systems are still often known as '''Poodle thrusters'''. The name was a play on the larger systems being developed under [[Project Rover]], which led to NERVA. In April 1965 they ran their testbed engine for 65 hours at about 1500&nbsp;°C, producing a specific impulse of 650 to 700 seconds (6.5 to 7&nbsp;kN·s/kg).

[[TRW Inc.|TRW]] maintained a fairly active development program known as '''Poodle''' from 1961 to 1965, and today the systems are still often known as '''Poodle thrusters'''. The name was a play on the larger systems being developed under [[Project Rover]], which led to NERVA. In April 1965 they ran their testbed engine for 65&nbsp;hours at about {{cvt|1500|C|F|-2}}, producing a specific impulse of 650 to 700&nbsp;seconds (6.5 to 7&nbsp;kN·s/kg).



==Photon Pressure==

==Photon pressure==

{{see also|Nuclear photonic rocket}}

Even without an exhaust, the [[Radiation pressure|photon pressure]] of the energy emitted by a thermal source can produce thrust, although an extremely tiny amount.

Even without an exhaust, the [[Radiation pressure|photon pressure]] of the energy emitted by a thermal source can produce thrust, although an extremely tiny amount. A famous example of spacecraft thrust due to photon pressure was the [[Pioneer anomaly]], in which photons from the onboard radioisotope source caused a tiny but measurable acceleration of the Pioneer spacecraft.

The inadvertent photon pressure from a radioisotope source is one of the suggested solutions to the [[Pioneer anomaly]]. The Pioneer space probes are powered by radioisotope thermal generators located on the end of a long arm to keep their radiation away from the spacecraft electronics. In this position the back of the main radio dish is preferentially exposed, meaning that radiation (primarily infra-red) scattered by the dish would tend to be scattered to the rear of the spacecraft. This could lead to a ''tiny'' amount of net thrust being generated, although all calculations to date suggest it is not enough in itself to fully explain the effect.{{Citation needed|date=November 2008}}



A similar phenomenon occurred on the [[New Horizons]] spacecraft; photons (thermal infrared) from the RTG, reflected from the spacecraft's antenna, produced a very small thrust which propelled the spacecraft slightly off course.<ref>[http://pluto.jhuapl.edu/News-Center/PI-Perspectives.php?page=piPerspective_05_21_2010 New Horizons official website article mentioning the thrust from the RTG]</ref>

A similar phenomenon occurred on the [[New Horizons]] spacecraft; photons (thermal infrared) from the RTG, reflected from the spacecraft's antenna, produced a very small thrust which propelled the spacecraft slightly off course.<ref>[http://pluto.jhuapl.edu/News-Center/PI-Perspectives.php?page=piPerspective_05_21_2010 New Horizons official website article mentioning the thrust from the RTG]</ref>


Latest revision as of 17:27, 19 June 2024

Aradioisotope rocketorradioisotope thermal rocket is a type of thermal rocket engine that uses the heat generated by the decay of radioactive elements to heat a working fluid, which is then exhausted through a rocket nozzle to produce thrust. They are similar in nature to nuclear thermal rockets such as NERVA, but are considerably simpler and often have no moving parts. Alternatively, radioisotopes may be used in a radioisotope electric rocket,[1] in which energy from nuclear decay is used to generate the electricity used to power an electric propulsion system.

The basic idea is a development of existing radioisotope thermoelectric generator, or RTG, systems, in which the heat generated by decaying nuclear fuel is used to generate power. In the rocket application the generator is removed, and the working fluid is instead used to produce thrust directly. Temperatures of about 1,500 to 2,000 °C (2,700 to 3,600 °F) are possible in this system, allowing for specific impulses of about 700 to 800 seconds (7 to 8 kN·s/kg), about double that of the best chemical engines such as the LH2-LOX Space Shuttle Main Engine.

However the amount of power generated by such systems is typically fairly low. Whereas the full "active" reactor system in a nuclear thermal rocket can be expected to generate over a gigawatt, a radioisotope generator might get 5 kW. This means that the design, while highly efficient, can produce thrust levels of perhaps 1.3 to 1.5 N (0.29 to 0.34 lbf), making them useful only for thrusters. In order to increase the power for medium-duration missions, engines would typically use fuels with a short half-life such as polonium-210, as opposed to the typical RTG which would use a long half-life fuel such as plutonium-238 in order to produce more constant power over longer periods of time.[2]

Another drawback to the use of radioisotopes in rockets is an inability to change the operating power. The radioisotope constantly generates heat that must be safely dissipated when it is not heating a propellant. Reactors, on the other hand, can be throttled or shut down as desired.

Technology development[edit]

TRW maintained a fairly active development program known as Poodle from 1961 to 1965, and today the systems are still often known as Poodle thrusters. The name was a play on the larger systems being developed under Project Rover, which led to NERVA. In April 1965 they ran their testbed engine for 65 hours at about 1,500 °C (2,700 °F), producing a specific impulse of 650 to 700 seconds (6.5 to 7 kN·s/kg).

Photon pressure[edit]

Even without an exhaust, the photon pressure of the energy emitted by a thermal source can produce thrust, although an extremely tiny amount. A famous example of spacecraft thrust due to photon pressure was the Pioneer anomaly, in which photons from the onboard radioisotope source caused a tiny but measurable acceleration of the Pioneer spacecraft.

A similar phenomenon occurred on the New Horizons spacecraft; photons (thermal infrared) from the RTG, reflected from the spacecraft's antenna, produced a very small thrust which propelled the spacecraft slightly off course.[3]

See also[edit]

References[edit]

  1. ^ Schmidt, George R.; Manzella, David H.; Kamhawi, Hani; Kremic, Tibor; Oleson, Steven R.; Dankanich, John W.; Dudzinski, Leonard A. (1 February 2010). "Radioisotope electric propulsion (REP): A near-term approach to nuclear propulsion". Acta Astronautica. 66 (3): 501–507. Bibcode:2010AcAau..66..501S. doi:10.1016/j.actaastro.2009.07.006. hdl:2060/20110016114.
  • ^ AIAA meeting paper comparing fermium, polonium and plutonium as power sources[permanent dead link]
  • ^ New Horizons official website article mentioning the thrust from the RTG
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Radioisotope_rocket&oldid=1229952916"

    Category: 
    Nuclear spacecraft propulsion
    Hidden categories: 
    All articles with dead external links
    Articles with dead external links from November 2017
    Articles with permanently dead external links
    Articles needing additional references from September 2010
    All articles needing additional references
    Articles with dead external links from January 2018
     



    This page was last edited on 19 June 2024, at 17:27 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki