Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 History  





2 Specification  



2.1  X-4 air-to-air missile  





2.2  X-7 anti-tank missile  







3 See also  





4 Notes  





5 External links  














Ruhrstahl X-4: Difference between revisions






Deutsch
Español
Esperanto
Français
Bahasa Indonesia
Italiano
Қазақша
Magyar

Polski
Português
Русский
Slovenščina
Suomi
Svenska
Tiếng Vit
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 





Help
 

From Wikipedia, the free encyclopedia
 


Browse history interactively
 Previous edit
Content deleted Content added
Arjun Sarup (talk | contribs)
83 edits
Added photo.
 
(27 intermediate revisions by 23 users not shown)
Line 1: Line 1:

{{short description|Air-to-air missile}}

{{short description|WWII guided missile developed by Nazi Germany}}

{{Refimprove|date=October 2009}}

{{Refimprove|date=October 2009}}

[[File:Ruhrstahl X-4 missile.jpg|right|thumb|A Ruhrstahl X-4 at the [[NMUSAF]].]]

[[File:Ruhrstahl X-4 missile.jpg|right|thumb|A Ruhrstahl X-4 at the [[NMUSAF]].]]



The '''Ruhrstahl Ru 344 X-4''' or '''Ruhrstahl-Kramer RK 344'''<ref>[http://www.nevingtonwarmuseum.com/kramer-rk-344.html Nevington War Museum - Kramer Rk 344]</ref> was a [[Wire guided missile|wire guided]] [[air-to-air missile]] designed by Germany during [[World War II]]. The X-4 did not see operational service and thus was not proven in combat but inspired considerable post-war work around the world, and was the basis for the development of several ground-launched [[anti-tank]] missiles, including the [[Malkara (missile)|Malkara]].<!--and TOW?-->

The '''Ruhrstahl Ru 344 X-4''' or '''Ruhrstahl-Kramer RK 344'''<ref>[http://www.nevingtonwarmuseum.com/kramer-rk-344.html Nevington War Museum - Kramer Rk 344]</ref> was a [[Wire-guided missile|wire-guided]] [[air-to-air missile]] designed by Germany during [[World War II]]. The X-4 did not see operational service and thus was not proven in combat but inspired considerable post-war work around the world, and was the basis for the development of several ground-launched [[anti-tank]] missiles.{{cn|date=May 2023}}



==History==

==History==

[[File:Rocket Kramer X4.jpg|thumb|Kramer X4 ([[Deutsches Museum]] in [[Munich]])]]

[[File:Rocket Kramer X4.jpg|thumb|Kramer X4 ([[Deutsches Museum]] in [[Munich]])]]

[[File:Ruhrstahl X-4.jpg|thumb|Ruhrstahl X-4 in RAF Museum Cosford]]

[[File:Ruhrstahl X-4.jpg|thumb|Ruhrstahl X-4 in RAF Museum Cosford]]

[[File:X-4 UdvarHazy.jpg|thumb|A Ruhrstahl X-4 on display at the [[Udvar-Hazy Center]].]]

During 1943, the [[Royal Air Force|RAF]]'s [[RAF Bomber Command|Bomber Command]] and the US Air Force mounted a series of heavy raids against Germany. Despite heavy bomber losses, these prompted ''[[Luftwaffe]]'' research into considerably more powerful anti-bomber weaponry in order to reduce the cost in lost [[fighter aircraft]] and aircrew. A massive development effort resulted in a number of heavy-calibre [[autocannon]] designs, [[air-to-air rocket]]s, [[Surface-to-air missile|SAM]]s, and the X-4.



Work on the X-4 began in June 1943, by Dr [[Max Kramer]] at {{ill|Ruhrstahl AG|de|3=Ruhrstahl}}. The idea was to build a missile with enough range to allow it to be fired from outside the range of the bombers' guns (what is now called a [[standoff missile|stand-off]] weapon). The bombers' defensive guns had a maximum effective range of about {{cvt|1000|m}}. The missile was to be guided with enough accuracy to guarantee a "kill". The X-4 met these specifications and more. Its BMW 109-448 rocket motor accelerated the missile to over {{cvt|1150|km/h}} and kept the X-4 at this speed during its "cruise", between {{cvt|1.5 and 4|km|1}}.

During 1943, the [[Royal Air Force|RAF]]'s [[RAF Bomber Command|Bomber Command]] mounted a series of heavy raids against Germany. Despite heavy bomber losses, these prompted ''[[Luftwaffe]]'' research into considerably more powerful anti-bomber weaponry in order to reduce the cost in lost [[fighter aircraft]] and aircrew. A massive development effort resulted in a number of heavy-calibre [[autocannon]] designs, [[air-to-air rocket]]s, [[Surface-to-air missile|SAM]]s, and the X-4.



The rocket burned a [[hypergolic]] mixture of [[S-Stoff]] ([[nitric acid]] with 5% [[ferric chloride|iron(III) chloride]]) and [[R-Stoff]] (an organic amine-mixture of 50% [[dimethylaminobenzene]] and 50% [[triethylamine]] called [[Tonka (fuel)|Tonka 250]]) as propellant, delivering {{convert|140|kg|lb|abbr=on}} thrust initially, declining to {{convert|30|kg|lb|abbr=on}} over the 17-second burn.<ref>Fitzsimons, Bernard, general editor. ''The Encyclopedia of 20th Century Weapons and Warfare'' (London: Phoebus Publishing Company, 1978), Volume 24, p.2602-3, "X-4, Ruhrstahl".</ref> As there was no room for a fuel pump, the fuels were forced into the motor by pistons inside long tubes, the tubes being coiled (similar to a [[coil spring]]) to fit inside the airframe. S-Stoff was so [[corrosion|corrosive]], it dissolved all base metals and was extremely difficult and dangerous to handle. The Germans planned to replace the motor with a [[solid fuel]] design as soon as possible.

Work on the X-4 began in June 1943, by Dr [[Max Kramer]] at [[Ruhrstahl]]. The idea was to build a missile with enough range to allow it to be fired from outside the range of the bombers' guns (what is now called a [[standoff missile|stand-off]] weapon), while being guided with enough accuracy to guarantee a "kill". The X-4 met these specifications and more; its BMW 109-448 rocket motor accelerated the missile to over 1,150&nbsp;km/h (715&nbsp;mph) - about the same speed as both the earlier [[Werfer-Granate 21]] and folding-fin [[R4M]] rockets - and kept the X-4 there during its "cruise", between 1.5 and 4&nbsp;km (0.9-2.5&nbsp;mi), while the defensive guns had a maximum effective range of about 1000 m (1,094 yd).



The missile was spin-stabilized at about 60 rpm,<ref>Christopher, John. ''The Race for Hitler's X-Planes'' (The Mill, Gloucestershire: History Press, 2013), p.132.</ref> or one rotation a second, so any asymmetrical thrust from the engine or inaccuracies in the control surfaces would be evened out. Signals to operate control surfaces on the tail were sent via two wires (a method chosen to avoid radio jamming),<ref>Christopher, p.132.</ref> which unwound from [[bobbin]]s housed within long, bullet-shaped fairings, themselves mounted either on the roots of an opposing pair of the larger mid-body fins (there were four, swept 45°),<ref>Christopher, p.132.</ref> or on one pair of those same fins' opposing tips; these contained a total of about {{convert|5.5|km|smi nmi|abbr=on}} of wire.<ref>Christopher, p.132.</ref> The wires were controlled by a [[joystick]] in the cockpit.<ref>Christopher, p.132.</ref> A [[gyroscope]] kept track of "up" so control inputs from the pilot's joystick in the launch aircraft could be translated into [[Yaw angle|yaw]] and [[Pitch (flight)|pitch]] as the missile spun. Flares attached to two of the midsection wings were used to keep the missile visible through the smoke of its motor.

The rocket burned a [[hypergolic]] mixture of [[S-Stoff]] ([[nitric acid]] with 5% [[ferric chloride|iron(III) chloride]]) and [[R-Stoff]] (an organic amine-mixture of 50% [[dimethylaminobenzene]] and 50% [[triethylamine]] called Tonka 250) as propellant, delivering {{convert|140|kg|lb|abbr=on}} thrust initially, declining to {{convert|30|kg|lb|abbr=on}} over the 17-second burn.<ref>Fitzsimons, Bernard, general editor. ''The Encyclopedia of 20th Century Weapons and Warfare'' (London: Phoebus Publishing Company, 1978), Volume 24, p.2602-3, "X-4, Ruhrstahl".</ref> As there was no room for a fuel pump, the fuels were forced into the motor by pistons inside long tubes, the tubes being coiled (similar to a [[coil spring]]) to fit inside the airframe. S-Stoff was so [[corrosion|corrosive]], it dissolved all base metals and was extremely difficult and dangerous to handle. The Germans planned to replace the motor with a [[solid fuel]] design as soon as possible.



The warhead consisted of a {{convert|20|kg|abbr=on}} fragmentation device that had a lethal radius of about {{convert|8|m|abbr=on}}. It was thought that the guidance system would allow the pilot to get the missile into this range in terms of pitch and yaw. But with the ranges the missile could operate at, it would be almost impossible to judge range to the target bomber anywhere near this accuracy. For this reason the missile mounted a [[proximity fuze]] known asa ''Kranich'' ([[Crane (bird)|Crane]]), using an acoustical system tuned to the 200&nbsp;Hz sound of [[Wright R-1820|the B-17's engines]] in cruise,<ref>Fitzsimons, p.2603, "X-4, Ruhrstahl".</ref> activated by the [[Doppler shift]] as the missile approached.<ref>Christopher, p.133.</ref> The trigger range was {{convert|7|m|ft|spell=in}}.<ref>Fitzsimons, p.2603, "X-4, Ruhrstahl".</ref>

The missile was spin-stabilized at about 60 rpm,<ref>Christopher, John. ''The Race for Hitler's X-Planes'' (The Mill, Gloucestershire: History Press, 2013), p.132.</ref> or one rotation a second, so any asymmetrical thrust from the engine or inaccuracies in the control surfaces would be evened out. Signals to operate control surfaces on the tail were sent via two wires (a method chosen to avoid jamming),<ref>Christopher, p.132.</ref> which unwound from [[bobbin]]s housed within long, bullet-shaped fairings, themselves mounted either on the roots of an opposing pair of the larger mid-body fins (there were four, swept 45°),<ref>Christopher, p.132.</ref> or on one pair of those same fins' opposing tips; these contained a total of about {{convert|5.5|km|smi nmi|abbr=on}} of wire.<ref>Christopher, p.132.</ref> The wires were controlled by a [[joystick]] in the cockpit.<ref>Christopher, p.132.</ref> A [[gyroscope]] kept track of "up" so control inputs from the pilot's joystick in the launch aircraft could be translated into [[Yaw angle|yaw]] and [[Pitch (flight)|pitch]] as the missile spun. Flares attached to two of the midsection wings were used to keep the missile visible through the smoke of its motor.



The first flight test occurred on August 11, 1944, using a [[Focke-Wulf Fw 190]] for the launch platform.<ref name="Ford">{{cite book|last1=Ford|first1=Roger|title=Germany's Secret Weapons of World War II|date=2013|publisher=Amber Books|location=London, United Kingdom|isbn=9781909160569|pages=224}}</ref> Subsequent tests used the [[Junkers Ju 88]] and [[Messerschmitt Me 262]], although they were not launched from the latter. The X-4 had originally been intended for use by single-seat fighters (including the Me 262 and possibly the [[Dornier Do 335]]),<ref>Christopher, p.133.</ref> but the problems in guiding both the missile and the aircraft at the same time proved unworkable. Instead, the X-4 was re-directed to multi-seat aircraft like the Ju 88, while the unguided [[R4M rocket]] was to be used in single-seaters.

The warhead consisted of a {{convert|20|kg|abbr=on}} fragmentation device that had a lethal radius of about {{convert|8|m|abbr=on}}. It was thought that the guidance system would allow the pilot to get the missile into this range in terms of pitch and yaw, but at the ranges the missile could operate at it would be almost impossible to judge range to anywhere near this accuracy. For this reason the missile mounted a [[proximity fuze]] known as ''[[Kranich]]'', an acoustical system tuned to the 200&nbsp;Hz sound of [[Wright R-1820|the B-17's engines]] in cruise,<ref>Fitzsimons, p.2603, "X-4, Ruhrstahl".</ref> activated by the [[Doppler shift]] as the missile approached.<ref>Christopher, p.133.</ref> The trigger range was {{convert|7|m|ft|abbr=on}}.<ref>Fitzsimons, p.2603, "X-4, Ruhrstahl".</ref>


The first flight test occurred on August 11, 1944 using a [[Focke-Wulf Fw 190]] for the launch platform.<ref name="Ford">{{cite book|last1=Ford|first1=Roger|title=Germany's Secret Weapons of World War II|date=2013|publisher=Amber Books|location=London, United Kingdom|isbn=9781909160569|pages=224}}</ref> Subsequent tests used the [[Junkers Ju 88]] and [[Messerschmitt Me 262]], although they were not launched from the latter. The X-4 had originally been intended for use by single-seat fighters (including the Me 262 and possibly the [[Dornier Do 335]]),<ref>Christopher, p.133.</ref> but the problems in guiding both the missile and the aircraft at the same time proved unworkable. Instead, the X-4 was re-directed to multi-seat aircraft like the Ju 88, while the unguided [[R4M rocket]] was to be used in single-seaters.



The X-4 was designed to be easily assembled by unskilled labour and [[airframe]] production began in early 1945 incorporating low-cost (non-strategic) materials, such as wood for fins.<ref>Christopher, p.133.</ref> Production was hampered by Allied bombing of the [[BMW]] rocket engine factory at [[Stargard Szczeciński|Stargard]], though as many as 1,000 X-4s may have been completed,<ref>Christopher, p.133.</ref> the missile was never officially delivered to the ''Luftwaffe''.<ref>Christopher, p.133.</ref> The [[fighter aircraft|fighter]]-[[interceptor aircraft|interceptor]] designed to use this missile as its primary weapon was the [[Focke-Wulf Ta 183|Focke-Wulf Ta 183 ''Huckebein'']], which never got out of the project stage.

The X-4 was designed to be easily assembled by unskilled labour and [[airframe]] production began in early 1945 incorporating low-cost (non-strategic) materials, such as wood for fins.<ref>Christopher, p.133.</ref> Production was hampered by Allied bombing of the [[BMW]] rocket engine factory at [[Stargard Szczeciński|Stargard]], though as many as 1,000 X-4s may have been completed,<ref>Christopher, p.133.</ref> the missile was never officially delivered to the ''Luftwaffe''.<ref>Christopher, p.133.</ref> The [[fighter aircraft|fighter]]-[[interceptor aircraft|interceptor]] designed to use this missile as its primary weapon was the [[Focke-Wulf Ta 183|Focke-Wulf Ta 183 ''Huckebein'']], which never got out of the project stage.



After the war, French engineers tried to develop a domestic version of the X-7, the [[SS.10|Nord SS.10]]. 200 units were manufactured between 1947 and 1950. However, the program was disbanded due to the dangerous pre-flight refuelling involved (the hypergolic nitric acid and Tonka combination was highly explosive).

After the war, French engineers tried to develop a domestic version of the X-4, the [[SS.10|Nord SS.10]]. 200 units were manufactured between 1947 and 1950. However, the program was disbanded due to the dangerous pre-flight refueling involved (the hypergolic nitric acid and Tonka combination was highly explosive).



==Specification==

==Specification==

Line 30: Line 30:

* Primary function: short-range [[air-to-air missile]]

* Primary function: short-range [[air-to-air missile]]

* Propulsion: [[BMW 109-448]] liquid rocket motor giving {{convert|30|-|140|kg|lb|abbr=on}} thrust for 17 seconds<ref>Fitzsimons, p.2602, "X-4, Ruhrstahl"; Christopher, p.132, says 20 seconds, according to the Fedden Report.</ref>

* Propulsion: [[BMW 109-448]] liquid rocket motor giving {{convert|30|-|140|kg|lb|abbr=on}} thrust for 17 seconds<ref>Fitzsimons, p.2602, "X-4, Ruhrstahl"; Christopher, p.132, says 20 seconds, according to the Fedden Report.</ref>

* Length: {{convert|2|m|ft|abbr=on}}<ref name=":1">{{Cite book |last=Fitzsimons |first=Bernard |url=https://www.worldcat.org/oclc/4515654 |title=The Illustrated encyclopedia of 20th century weapons and warfare |publisher=Colombia House |year=1977 |isbn=0-8393-6175-0 |volume=24 |location=New York |pages=2602–3 |language=en |chapter="X-4, Ruhrstahl |oclc=4515654}}</ref>

* Length: {{convert|201|cm|in|abbr=on}}

* Diameter: {{convert|22|cm|in|abbr=on}} (maximum)

* Diameter: {{convert|22|cm|in|abbr=on}} (maximum)

* Wingspan: {{convert|72.6|cm|in|abbr=on}}

* Wingspan: {{convert|74|cm|in|abbr=on}}<ref name=":1" />

* Launch weight: {{convert|60|kg|lb|abbr=on}}

* Launch weight: {{convert|60|kg|lb|abbr=on}}<ref name=":1" />

* Speed: {{convert|325|m/s|ft/s|abbr=on}}<ref>Christopher, p.133, says {{convert|620|mph|m/s|abbr=on}}.</ref>

* Speed: {{convert|880|km/h|mph|abbr=on}}<ref>Fitzsimons, p.2603, "X-4, Ruhrstahl"; Christopher, p.133, says {{convert|620|mph|m/s|abbr=on}}.</ref>

* Warhead: {{convert|20|kg|lb|abbr=on}} fragmentation<ref>Christopher, p.133.</ref>

* Warhead: {{convert|20|kg|lb|abbr=on}} fragmentation<ref>Christopher, p.133. </ref>

* Range: {{convert|1.5|-|3.5|km|smi nmi|abbr=on}}<ref>Christopher, p.132.</ref>

* Range: {{convert|1.5|-|3.5|km|smi nmi|abbr=on}}<ref>Christopher, p.132.</ref>

* Fuzes: Kranich acoustic [[proximity fuze]]

* Fuzes: Kranich acoustic [[proximity fuze]]

Line 48: Line 48:

* Diameter: {{convert|150|mm|in|abbr=on}}

* Diameter: {{convert|150|mm|in|abbr=on}}

* Wingspan: {{convert|600|mm|in|abbr=on}}

* Wingspan: {{convert|600|mm|in|abbr=on}}

* Weight: {{convert|10|kg|lb|abbr=on}}<ref name=":0">{{Cite book |last=Fitzsimons |first=Bernard |title=The Illustrated Encyclopedia of 20th Century Weapons & Warfare |publisher=Colombia House |year=1977 |isbn=0-8393-6175-0 |location=New York |pages=2603 |language=en}}</ref><!-- [20] doesn't specify whether this weight refers to launch weight or system weight or if there is a distinction. -->

* Launch weight: {{convert|9|kg|lb|abbr=on}}

* Speed: {{convert|245|m/s|mph kn km/h|abbr=on}}

* Speed: {{convert|100|m/s|mph kn km/h|abbr=on}}<ref name=":0" />

* Warhead: {{convert|2.5|kg|lb|abbr=on}} [[Shaped charge|hollow charge]]

* Warhead: {{convert|2.5|kg|lb|abbr=on}} [[Shaped charge|hollow charge]]

**Penetration: over {{convert|200|mm|in|abbr=on}} at 30°<ref>Fitzsimons, p.2603, "X-7, Ruhrstahl".</ref>

**Penetration: over {{convert|200|mm|in|abbr=on}} at 30°<ref name=":0" />

* Range: {{convert|1000|m|yd|abbr=on}}

* Range: {{convert|1000|m|yd|abbr=on}}<ref name=":0" />

* Fuzes: impact (?)

* Fuzes: impact (?)

* Guidance system: [[MCLOS]] visual guidance with wire control

* Guidance system: [[MCLOS]] visual guidance with wire control

* Unit cost:

* Unit cost:

* Date deployed: never (?)

* Date deployed: never<ref name=":0" />



==See also==

==See also==

Line 67: Line 67:

==External links==

==External links==

{{Commons category|Ruhrstahl X 4}}

{{Commons category|Ruhrstahl X 4}}

* [https://archive.is/20110805100057/http://www.rafmuseum.org/cosford/collections/missiles/missile_info.cfm?missile_id=25 Ruhrstahl Kramer X4 - Royal Air Force Museum, Cosford (UK)]

* [https://archive.today/20110805100057/http://www.rafmuseum.org/cosford/collections/missiles/missile_info.cfm?missile_id=25 Ruhrstahl Kramer X4 - Royal Air Force Museum, Cosford (UK)]

* [http://www.lonesentry.com/ordnance/x-4-aircraft-launched-antiaircraft-rocket.html X4: Aircraft Launched Antiaircraft Rocket] {{Webarchive|url=https://web.archive.org/web/20180502213626/http://www.lonesentry.com/ordnance/x-4-aircraft-launched-antiaircraft-rocket.html |date=2018-05-02 }}

* [http://www.luft46.com/missile/x-4.html Luft '46]

* [http://www.lonesentry.com/ordnance/x-4-aircraft-launched-antiaircraft-rocket.html X4: Aircraft Launched Antiaircraft Rocket]



{{WW2 German Aerial Weapons}}

{{WW2 German Aerial Weapons}}

{{RLM aircraft designations}}



[[Category:World War II guided missiles of Germany]]

[[Category:World War II guided missiles of Germany]]

[[Category:Air-to-air missiles of Germany]]

[[Category:Wire-guided missiles]]


Latest revision as of 02:47, 2 April 2024

A Ruhrstahl X-4 at the NMUSAF.

The Ruhrstahl Ru 344 X-4orRuhrstahl-Kramer RK 344[1] was a wire-guided air-to-air missile designed by Germany during World War II. The X-4 did not see operational service and thus was not proven in combat but inspired considerable post-war work around the world, and was the basis for the development of several ground-launched anti-tank missiles.[citation needed]

History[edit]

Kramer X4 (Deutsches MuseuminMunich)
Ruhrstahl X-4 in RAF Museum Cosford
A Ruhrstahl X-4 on display at the Udvar-Hazy Center.

During 1943, the RAF's Bomber Command and the US Air Force mounted a series of heavy raids against Germany. Despite heavy bomber losses, these prompted Luftwaffe research into considerably more powerful anti-bomber weaponry in order to reduce the cost in lost fighter aircraft and aircrew. A massive development effort resulted in a number of heavy-calibre autocannon designs, air-to-air rockets, SAMs, and the X-4.

Work on the X-4 began in June 1943, by Dr Max KrameratRuhrstahl AG [de]. The idea was to build a missile with enough range to allow it to be fired from outside the range of the bombers' guns (what is now called a stand-off weapon). The bombers' defensive guns had a maximum effective range of about 1,000 m (3,300 ft). The missile was to be guided with enough accuracy to guarantee a "kill". The X-4 met these specifications and more. Its BMW 109-448 rocket motor accelerated the missile to over 1,150 km/h (710 mph) and kept the X-4 at this speed during its "cruise", between 1.5 and 4 km (0.9 and 2.5 mi).

The rocket burned a hypergolic mixture of S-Stoff (nitric acid with 5% iron(III) chloride) and R-Stoff (an organic amine-mixture of 50% dimethylaminobenzene and 50% triethylamine called Tonka 250) as propellant, delivering 140 kg (310 lb) thrust initially, declining to 30 kg (66 lb) over the 17-second burn.[2] As there was no room for a fuel pump, the fuels were forced into the motor by pistons inside long tubes, the tubes being coiled (similar to a coil spring) to fit inside the airframe. S-Stoff was so corrosive, it dissolved all base metals and was extremely difficult and dangerous to handle. The Germans planned to replace the motor with a solid fuel design as soon as possible.

The missile was spin-stabilized at about 60 rpm,[3] or one rotation a second, so any asymmetrical thrust from the engine or inaccuracies in the control surfaces would be evened out. Signals to operate control surfaces on the tail were sent via two wires (a method chosen to avoid radio jamming),[4] which unwound from bobbins housed within long, bullet-shaped fairings, themselves mounted either on the roots of an opposing pair of the larger mid-body fins (there were four, swept 45°),[5] or on one pair of those same fins' opposing tips; these contained a total of about 5.5 km (3.4 mi; 3.0 nmi) of wire.[6] The wires were controlled by a joystick in the cockpit.[7]Agyroscope kept track of "up" so control inputs from the pilot's joystick in the launch aircraft could be translated into yaw and pitch as the missile spun. Flares attached to two of the midsection wings were used to keep the missile visible through the smoke of its motor.

The warhead consisted of a 20 kg (44 lb) fragmentation device that had a lethal radius of about 8 m (26 ft). It was thought that the guidance system would allow the pilot to get the missile into this range in terms of pitch and yaw. But with the ranges the missile could operate at, it would be almost impossible to judge range to the target bomber anywhere near this accuracy. For this reason the missile mounted a proximity fuze known as a Kranich (Crane), using an acoustical system tuned to the 200 Hz sound of the B-17's engines in cruise,[8] activated by the Doppler shift as the missile approached.[9] The trigger range was seven metres (23 ft).[10]

The first flight test occurred on August 11, 1944, using a Focke-Wulf Fw 190 for the launch platform.[11] Subsequent tests used the Junkers Ju 88 and Messerschmitt Me 262, although they were not launched from the latter. The X-4 had originally been intended for use by single-seat fighters (including the Me 262 and possibly the Dornier Do 335),[12] but the problems in guiding both the missile and the aircraft at the same time proved unworkable. Instead, the X-4 was re-directed to multi-seat aircraft like the Ju 88, while the unguided R4M rocket was to be used in single-seaters.

The X-4 was designed to be easily assembled by unskilled labour and airframe production began in early 1945 incorporating low-cost (non-strategic) materials, such as wood for fins.[13] Production was hampered by Allied bombing of the BMW rocket engine factory at Stargard, though as many as 1,000 X-4s may have been completed,[14] the missile was never officially delivered to the Luftwaffe.[15] The fighter-interceptor designed to use this missile as its primary weapon was the Focke-Wulf Ta 183 Huckebein, which never got out of the project stage.

After the war, French engineers tried to develop a domestic version of the X-4, the Nord SS.10. 200 units were manufactured between 1947 and 1950. However, the program was disbanded due to the dangerous pre-flight refueling involved (the hypergolic nitric acid and Tonka combination was highly explosive).

Specification[edit]

X-4 air-to-air missile[edit]

X-7 anti-tank missile[edit]

See also[edit]

Notes[edit]

  • ^ Fitzsimons, Bernard, general editor. The Encyclopedia of 20th Century Weapons and Warfare (London: Phoebus Publishing Company, 1978), Volume 24, p.2602-3, "X-4, Ruhrstahl".
  • ^ Christopher, John. The Race for Hitler's X-Planes (The Mill, Gloucestershire: History Press, 2013), p.132.
  • ^ Christopher, p.132.
  • ^ Christopher, p.132.
  • ^ Christopher, p.132.
  • ^ Christopher, p.132.
  • ^ Fitzsimons, p.2603, "X-4, Ruhrstahl".
  • ^ Christopher, p.133.
  • ^ Fitzsimons, p.2603, "X-4, Ruhrstahl".
  • ^ Ford, Roger (2013). Germany's Secret Weapons of World War II. London, United Kingdom: Amber Books. p. 224. ISBN 9781909160569.
  • ^ Christopher, p.133.
  • ^ Christopher, p.133.
  • ^ Christopher, p.133.
  • ^ Christopher, p.133.
  • ^ Fitzsimons, p.2602, "X-4, Ruhrstahl"; Christopher, p.132, says 20 seconds, according to the Fedden Report.
  • ^ a b c Fitzsimons, Bernard (1977). ""X-4, Ruhrstahl". The Illustrated encyclopedia of 20th century weapons and warfare. Vol. 24. New York: Colombia House. pp. 2602–3. ISBN 0-8393-6175-0. OCLC 4515654.
  • ^ Fitzsimons, p.2603, "X-4, Ruhrstahl"; Christopher, p.133, says 620 mph (280 m/s).
  • ^ Christopher, p.133.
  • ^ Christopher, p.132.
  • ^ a b c d e Fitzsimons, Bernard (1977). The Illustrated Encyclopedia of 20th Century Weapons & Warfare. New York: Colombia House. p. 2603. ISBN 0-8393-6175-0.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Ruhrstahl_X-4&oldid=1216809377"

    Categories: 
    World War II guided missiles of Germany
    Air-to-air missiles of Germany
    Wire-guided missiles
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles needing additional references from October 2009
    All articles needing additional references
    All articles with unsourced statements
    Articles with unsourced statements from May 2023
    Commons category link is on Wikidata
    Webarchive template wayback links
     



    This page was last edited on 2 April 2024, at 02:47 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki