Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Spacecraft effects  





2 Practical effects  





3 See also  





4 References  














Slosh dynamics






Deutsch
Español
Français

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




Print/export  







In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


This is an old revision of this page, as edited by Jvharrison (talk | contribs)at18:11, 11 October 2009 (Added the fact fuel slosh also refers to liquid motion in a full tank without a free surface.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
(diff)  Previous revision | Latest revision (diff) | Newer revision  (diff)

Influid dynamics, slosh refers to the movement of liquid inside another object (which is, typically, also undergoing motion).Strictly speaking the liquid must have a free surface to constitute a slosh dynamics problem, where the dynamics of the liquid can interact with the container to alter the system dynamics significantly.[1] Important examples include propellant slosh in spacecraft tanks and rockets (especially upper stages), and cargo slosh in ships and trucks transporting liquids (for example oil and gasoline): see free surface effect.However it has become common to refer to liquid motion in a completely filled tank,i.e.,without a free surface as "fuel slosh". Such motion is characterized by "inertial waves" and can be an important effect in spinning spacecraft dynamics. Extensive mathematical and empirical relationships have been derived to describe liquid slosh.[2][3] These types of analyses are typically undertaken using computational fluid dynamics and finite element methods to solve the fluid-structure interaction problem, especially if the solid container is flexible. Relevant fluid dynamics non-dimensional parameters include the Bond number, the Weber number, and the Reynolds number.

Slosh is an important effect for spacecraft,[4] ships, and some aircraft. Slosh was a factor in the recent Falcon 1 second test flight anomaly, and has been implicated in various other spacecraft anomalies, including a near-disaster[5] with the Near Earth Asteroid Rendezvous (NEAR Shoemaker) satellite.

Spacecraft effects

Liquid slosh in microgravity[6][7] is relevant to spacecraft, most commonly Earth-orbiting satellites, and must take account of liquid surface tension which can alter the shape (and thus the eigenvalues) of the liquid slug. Typically, a large part of the mass fraction of a satellite is liquid propellant at/near Beginning of Life (BOL), and slosh can adversely impact satellite performance in a number of ways. For example, propellant slosh can introduce uncertainty in spacecraft attitude (pointing) which is often called jitter. Similar phenomenon can cause pogo oscillation and can result in structural failure of space vehicle.

Another example is problematic interaction with the spacecraft Attitude Control System (ACS), especially for spinning satellites[8] which can suffer resonance between slosh and nutation, or adverse changes to the rotational inertia. Because of these types of risk, in the 1960s the National Aeronautics and Space Administration (NASA) extensively studied[9] liquid slosh in spacecraft tanks, and in the 1990s NASA undertook the Middeck 0-Gravity Dynamics Experiment[10] on the space shuttle. The European Space Agency has advanced these investigations[11][12][13][14] with the launch of SLOSHSAT. Extensive contributions have also been made[15] by the Southwest Research Institute, but research is widespread[16] in academia and industry.

Practical effects

The effect of slosh is used to limit the bounce of a roller hockey ball. Water slosh can significantly reduce the rebound height of a ball[17] but some amounts of liquid seem to lead to a resonance effect. Many of the balls for roller hockey commonly available contain water to reduce the bounce height.

See also

References

  1. ^ Moiseyev, N.N. & V.V. Rumyantsev. "Dynamic Stability of Bodies Containing Fluid." Springer-Verlag, 1968.
  • ^ Ibrahim, R.A. "Liquid Sloshing Dynamics: Theory and Applications." Cambridge University Press, 2005.
  • ^ "Liquid Sloshing Dynamics" (Google Books) @ http://books.google.com/books?id=ctvhvH74ZzEC&dq=liquid+slosh+ibrahim&printsec=frontcover&source=bn&hl=en&sa=X&oi=book_result&resnum=4&ct=result
  • ^ Reyhanoglu, M. "Maneuvering control problems for a spacecraft with unactuated fuel slosh dynamics." Control Applications, 2003. Proc 2003 IEEE Conference. Volume 1, 23-25 June 2003, pp695-699.
  • ^ Veldman, A.E.P. et al. "The Numerical Simulation of Liquid Sloshing On-Board Spacecraft." J. Comp. Phys. 224 (2007) 82-99.
  • ^ Monti, R. "Physics of Fluids in Microgravity." CRC, 2002.
  • ^ Antar, B.N. & V.S. Nuotio-Antar. "Fundamentals of Low Gravity Fluid Dynamics and Heat Transfer." CRC, 1994.
  • ^ Hubert, C. "Behavior of Spinning Space Vehicles with Onboard Liquids." NASA GSFC Symposium, 2003.
  • ^ Abramson, H.N. "The Dynamic Behavior of Liquids in Moving Containers." NASA SP-106, 1966.
  • ^ Crawley, E.F. & M.C. Van Schoor & E.B. Bokhour. "The Middeck 0-Gravity Dynamics Experiment: Summary Report." NASA-CR-4500, Mar 1993.
  • ^ Vreeburg, J.P.B. "Measured States of SLOSHSAT FLEVO." IAC-05-C1.2.09, Oct 2005.
  • ^ Prins, J.J.M. "SLOSHSAT FLEVO Project, Flight and Lessons Learned." IAC-05-B5.3./B5.5.05, Oct 2005.
  • ^ Luppes, R. & J.A. Helder & A.E.P. Veldman. "Liquid Sloshing in Microgravity." IAC-05-A2.2.07, Oct 2005.
  • ^ Vreeburg, J.P.B. "SLOSHSAT Spacecraft Calibration at Stationary Spin Rates." J. Spacecraft & Rockets, v45, n1, p65, Jan/Feb 2008.
  • ^ http://www.swri.org/3pubs/brochure/d04/fdynspac/fdynspac.htm
  • ^ http://sloshcentral.bbbeard.org/
  • ^ Sport ball for roller hockey; U.S. Patent 5516098; May 14, 1996; Jeffrey Aiello.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Slosh_dynamics&oldid=319270085"

    Categories: 
    Fluid mechanics
    Fluid dynamics
     



    This page was last edited on 11 October 2009, at 18:11 (UTC).

    This version of the page has been revised. Besides normal editing, the reason for revision may have been that this version contains factual inaccuracies, vandalism, or material not compatible with the Creative Commons Attribution-ShareAlike License.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki