Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Mathematical expression  



1.1  Appearance in the Navier-Stokes equations  







2 Applications  





3 References  





4 Further reading  














Weber number






Bosanski
Català
Deutsch
Español
فارسی
Français
ि
Italiano
עברית
Nederlands

Polski
Português
Русский
Slovenščina
Српски / srpski
Suomi
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Asplash after half a brick hits the water; the image is about half a meter across. Note the freely moving airborne water droplets, a phenomenon typical of high Reynolds number flows; the intricate non-spherical shapes of the droplets show that the Weber number is high. Also note the entrained bubbles in the body of the water, and an expanding ring of disturbance propagating away from the impact site.

The Weber number (We) is a dimensionless numberinfluid mechanics that is often useful in analysing fluid flows where there is an interface between two different fluids, especially for multiphase flows with strongly curved surfaces.[1] It is named after Moritz Weber (1871–1951).[2] It can be thought of as a measure of the relative importance of the fluid's inertia compared to its surface tension. The quantity is useful in analyzing thin film flows and the formation of droplets and bubbles.

Mathematical expression[edit]

The Weber number may be written as:

 

where

The modified Weber number,

 

equals the ratio of the kinetic energy on impact to the surface energy,

,

where

 

and

.

Appearance in the Navier-Stokes equations[edit]

The Weber number appears in the incompressible Navier-Stokes equations through a free surface boundary condition.[3]

For a fluid of constant density and dynamic viscosity , at the free surface interface there is a balance between the normal stress and the curvature force associated with the surface tension:

Where is the unit normal vector to the surface, is the Cauchy stress tensor, and is the divergence operator. The Cauchy stress tensor for an incompressible fluid takes the form:

Introducing the dynamic pressure and, assuming high Reynolds number flow, it is possible to nondimensionalize the variables with the scalings:

The free surface boundary condition in nondimensionalized variables is then:

Where is the Froude number, is the Reynolds number, and is the Weber number. The influence of the Weber number can then be quantified relative to gravitational and viscous forces.

Applications[edit]

One application of the Weber number is the study of heat pipes. When the momentum flux in the vapor core of the heat pipe is high, there is a possibility that the shear stress exerted on the liquid in the wick can be large enough to entrain droplets into the vapor flow. The Weber number is the dimensionless parameter that determines the onset of this phenomenon called the entrainment limit (Weber number greater than or equal to 1). In this case the Weber number is defined as the ratio of the momentum in the vapor layer divided by the surface tension force restraining the liquid, where the characteristic length is the surface pore size.

References[edit]

  1. ^ Arnold Frohn; Norbert Roth (27 March 2000). Dynamics of Droplets. Springer Science & Business Media. pp. 15–. ISBN 978-3-540-65887-0.
  • ^ Philip Day; Andreas Manz; Yonghao Zhang (28 July 2012). Microdroplet Technology: Principles and Emerging Applications in Biology and Chemistry. Springer Science & Business Media. pp. 9–. ISBN 978-1-4614-3265-4.
  • ^ Bush, John W.M. "Surface Tension Module" (PDF). Department of Mathematics, MIT.
  • Further reading[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Weber_number&oldid=1195776864"

    Categories: 
    Dimensionless numbers
    Fluid dynamics
    Dimensionless numbers of fluid mechanics
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles with GND identifiers
     



    This page was last edited on 15 January 2024, at 05:09 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki