Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Proof of existence  





2 References  














Θ (set theory)






Español
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inset theory, (pronounced like the letter theta) is the least nonzero ordinal such that there is no surjection from the reals onto .

has been studied in connection with strong partition cardinals and the axiom of determinacy.[1] The axiom of determinacy is equivalent to the existence of unboundedly many strong partition cardinals below , in the sense that every cardinal below has a strong partition cardinal above it.[2] This does not preclude the possibility that a single strong partition cardinal, above , suffices for all cardinals below , but the existence of such a cardinal would have additional consequences.[1]

If the reals can be well-ordered, then is simply , the cardinal successor of the cardinality of the continuum. Any set may be well-ordered assuming the axiom of choice (AC). However, Θ is often studied in contexts where the axiom of choice fails, such as models of the axiom of determinacy.[citation needed]

is also the supremum of the order types of all prewellorderings of the reals.[citation needed]

Proof of existence[edit]

It may not be obvious that it can be proven, without using AC, that there even exists a nonzero ordinal onto which there is no surjection from the reals (if there is such an ordinal, then there must be a least one because the ordinals are wellordered). However, suppose there were no such ordinal. Then to every ordinal α we could associate the set of all prewellorderings of the reals having order type α. This would give an injection from the class of all ordinals into the set of all sets of orderings on the reals (which can to be seen to be a set via repeated application of the powerset axiom). Now the axiom of replacement shows that the class of all ordinals is in fact a set. But that is impossible, by the Burali-Forti paradox.[citation needed]

References[edit]

  1. ^ a b Cunningham, Daniel W. (2017), "A strong partition cardinal above ", Archive for Mathematical Logic, 56 (3–4): 403–421, doi:10.1007/s00153-017-0529-8, MR 3633802
  • ^ Kechris, Alexander S.; Woodin, W. Hugh (2008), "The equivalence of partition properties and determinacy", Games, scales, and Suslin cardinals: The Cabal Seminar, Vol. I, Lecture Notes in Logic, vol. 31, Chicago: Association for Symbolic Logic, pp. 355–378, doi:10.1017/CBO9780511546488.018, ISBN 978-0-521-89951-2, MR 2463618
  • t
  • e

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Θ_(set_theory)&oldid=1226589511"

    Categories: 
    Cardinal numbers
    Descriptive set theory
    Determinacy
    Set theory stubs
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from May 2024
    Articles with unsourced statements from March 2014
    All stub articles
     



    This page was last edited on 31 May 2024, at 16:26 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki