Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Observation history  





2 Characteristics  





3 See also  





4 References  





5 External links  














253 Mathilde






العربية
 / Bân-lâm-gú
Català
Deutsch
Ελληνικά
Español
Esperanto
Euskara
فارسی
Français

Հայերեն
Íslenska
Italiano
Қазақша
Коми
Latina
Latviešu
Lëtzebuergesch
Lietuvių
Magyar
مصرى
Nederlands

Нохчийн
Norsk bokmål
Norsk nynorsk
Occitan
Plattdüütsch
Polski
Português
Română
Русский
Simple English
Slovenčina
Slovenščina
Српски / srpski
Suomi
Svenska
Tagalog
Татарча / tatarça

Українська
Tiếng Vit
Yorùbá


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 





This is a good article. Click here for more information.

From Wikipedia, the free encyclopedia
 


253 Mathilde

253 Mathilde as seen by NEAR in 1997

Discovery[1]
Discovered byJ. Palisa
Discovery siteVienna Obs.
Discovery date12 November 1885
Designations

MPC designation

(253) Mathilde
Pronunciation/məˈtɪldə/

Named after

Mathilde Loewy

Alternative designations

A885 VA, 1915 TN
1949 OL1

Minor planet category

Main belt
Orbital characteristics[2]
Epoch 31 July 2016 (JD 2457600.5)
Uncertainty parameter 0
Observation arc130.38 yr (47622 d)
Aphelion3.35003411 AU (501.157970 Gm)
Perihelion1.9467702 AU (291.23268 Gm)

Semi-major axis

2.648402147 AU (396.1953219 Gm)
Eccentricity0.26492652

Orbital period (sidereal)

4.31 yr (1574.3 d)

Average orbital speed

17.98 km/s[3]

Mean anomaly

170.584348°

Mean motion

0° 13m 43.248s / day
Inclination6.7427122°

Longitude of ascending node

179.58936°

Argument of perihelion

157.39642°
Earth MOID0.939032 AU (140.4772 Gm)
Jupiter MOID2.06073 AU (308.281 Gm)
TJupiter3.331
Physical characteristics
Dimensions52.8 km[2]
(66×48×46 km[4])
Mass(1.033±0.044)×1017 kg[5]

Mean density

1.3 g/cm3[5]

Equatorial surface gravity

0.00989 m/s2

Equatorial escape velocity

22.9 m/s

Synodic rotation period

417.7 h (17.40 d)[2]
17.406 ± 0.010 d[6]
(17 d 9 h 45 min)

Geometric albedo

0.0436±0.004[2]
Temperature≈ 174[7] K

Spectral type

Cb[2]

Absolute magnitude (H)

10.3[2]

Mathilde (minor planet designation: 253 Mathilde) is an asteroid in the intermediate asteroid belt, approximately 50 kilometers in diameter, that was discovered by Austrian astronomer Johann PalisaatVienna Observatory on 12 November 1885. It has a relatively elliptical orbit that requires more than four years to circle the Sun. This tumbling asteroid has an unusually slow rate of rotation, requiring 17.4 days to complete a 360° revolution about its axis. It is a primitive C-type asteroid, which means the surface has a high proportion of carbon; giving it a dark surface that reflects only 4% of the light that falls on it.[8]

Mathilde was visited by the NEAR Shoemaker spacecraft during June 1997, on its way to asteroid 433 Eros. During the little flyby, the spacecraft imaged a hemisphere of the asteroid, revealing many large craters that had gouged out depressions in the surface. It was the first carbonaceous asteroid to be explored and, until 21 Lutetia was visited in 2010, it was the largest asteroid to be visited by a spacecraft.

Observation history[edit]

Animation of NEAR Shoemaker trajectory from February 19, 1996 to February 12, 2001.
  NEAR Shoemaker;    433 Eros;   Earth;   253 Mathilde ;   Sun;

In 1880, Johann Palisa, the director of the Austrian Naval Observatory (538), was offered a position as an assistant at the newly completed Vienna Observatory. Although the job represented a demotion for Johann, it gave him access to the new 27-inch (690 mm) refractor, the largest telescope in the world at that time. By this point Johann had already discovered 27 asteroids, and he would employ the Vienna 27-inch (690 mm) and 12-inch (300 mm) instruments to find an additional 94 asteroids before he retired.[9]

Among his discoveries was the asteroid 253 Mathilde, found on November 12, 1885. The initial orbital elements of the asteroid were then computed by V. A. Lebeuf, another Austrian astronomer working at the Paris Observatory.[10] The name of the asteroid was suggested by Lebeuf, after Mathilde, the wife of Moritz Loewy—who was the vice director of the observatory in Paris.[1][10]

In 1995, ground-based observations determined that Mathilde is a C-type asteroid. It was also found to have an unusually long period of rotation of 418 hours.[10]

On June 27, 1997, the NEAR Shoemaker spacecraft passed within 1,212 km of Mathilde while moving at a velocity of 9.93 km/s. This close approach allowed the spacecraft to capture over 500 images of the surface,[8] and provided data for more accurate determinations of the asteroid's dimensions and mass (based on gravitational perturbation of the spacecraft).[5] However, only one hemisphere of Mathilde was imaged during the fly-by.[11] This was only the third asteroid to be imaged from a nearby distance, following 951 Gaspra and 243 Ida.

Characteristics[edit]

Damodar, a 20 km-wide crater on Mathilde
Image sequence of Mathilde during NEAR Shoemaker's flyby

Mathilde is very dark, with an albedo comparable to fresh asphalt,[12] and is thought to share the same composition as CI1 or CM2 carbonaceous chondrite meteorites, with a surface dominated by phyllosilicate minerals.[13] The asteroid has a number of extremely large craters, with the individual craters being named for coal fields and basins around the world.[14] The two largest craters, Ishikari (29.3 km) and Karoo (33.4 km), are as wide as the asteroid's average radius.[4] The impacts appear to have spalled large volumes off the asteroid, as suggested by the angular edges of the craters.[8] Uniformity in brightness and colour were visible in the craters and there was no appearance of layering, so the asteroid's interior must be very homogeneous. There are indications of material movement along the downslope direction.[4]

The density measured by NEAR Shoemaker, 1,300 kg/m3, is less than half that of a typical carbonaceous chondrite; this may indicate that the asteroid is very loosely packed rubble pile.[5] The same is true of several C-type asteroids studied by ground-based telescopes equipped with adaptive optics systems (45 Eugenia, 90 Antiope, 87 Sylvia and 121 Hermione). Up to 50% of the interior volume of Mathilde consists of open space. However, the existence of a 20-km-long scarp may indicate that the asteroid does have some structural strength, so it could contain some large internal components.[11] The low interior density is an inefficient transmitter of impact shock through the asteroid, which also helps to preserve the surface features to a high degree.[4]

Mathilde's orbitiseccentric, taking it to the outer reaches of the belt. Nonetheless, the orbit lies entirely between the orbits of Mars and Jupiter; it does not cross the planetary orbits. It also has one of the slowest rotation periods of the known asteroids—most asteroids have a rotation period in the range of 2–24 hours.[15] Because of the slow rotation rate, NEAR Shoemaker was sadly only able to photograph 60% of the asteroid's surface. The slow rate of rotation may be accounted for by a satellite orbiting the asteroid, but a search of the NEAR images revealed none larger than 10 km in diameter out to 20 times the radius of Mathilde.[16]

See also[edit]

References[edit]

  1. ^ a b Moore, Sir Patrick (1999). The Wandering Astronomer. CRC Press. pp. 59-61. ISBN 0-7503-0693-9. OL 6899638M.
  • ^ a b c d e f Unless otherwise noted, parameters are per: Yeomans, Donald K. (29 August 2003). "253 Mathilde". JPL Small-Body Database Browser. NASA. Retrieved 12 May 2016.
  • ^ For semi-major axis a, orbital period T and eccentricity e, the average orbital speed is given by:
    For the circumference of an ellipse, see: H. St̀eocker; J. Harris (1998). Handbook of Mathematics and Computational Science. Springer. pp. 386. ISBN 0-387-94746-9.
  • ^ a b c d J. Veverka; et al. (1999). "NEAR Encounter with Asteroid 253 Mathilde: Overview". Icarus. 140 (1): 3–16. Bibcode:1999Icar..140....3V. doi:10.1006/icar.1999.6120.
  • ^ a b c d D. K. Yeomans; et al. (1997). "Estimating the mass of asteroid 253 Mathilde from tracking data during the NEAR flyby". Science. 278 (5346): 2106–9. Bibcode:1997Sci...278.2106Y. doi:10.1126/science.278.5346.2106. PMID 9405343.
  • ^ Stefano Mottola; et al. (1995). "The slow rotation of 253 Mathilde". Planetary and Space Science. 43 (12): 1609–1613. Bibcode:1995P&SS...43.1609M. doi:10.1016/0032-0633(95)00127-1.
  • ^ For asteroid albedo α, semimajor axis a, solar luminosity , Stefan–Boltzmann constant σ and the asteroid's infrared emissivity ε (≈ 0.9), the approximate mean temperature T is given by:
    See: Torrence V. Johnson; Paul R. Weissman; Lucy-Ann A. McFadden (2007). Encyclopedia of the Solar System. Elsevier. pp. 294. ISBN 978-0-12-088589-3.
  • ^ a b c Williams, David R. (18 December 2001). "NEAR Flyby of Asteroid 253 Mathilde". NASA. Archived from the original on 18 August 2006. Retrieved 10 August 2006.
  • ^ Raab, Herbert (2002). "Johann Palisa, the most successful visual discoverer of" (PDF). Astronomical Society of Linz. Archived from the original (PDF) on 28 September 2007. Retrieved 27 August 2007.
  • ^ a b c Savage, D.; Young, L.; Diller, G.; Toulouse, A. (February 1996). "Near Earth Asteroid Rendezvous (NEAR) Press Kit". NASA. Archived from the original on 19 March 2012. Retrieved 29 August 2007.
  • ^ a b Cheng, Andrew F. (2004). "Implications of the NEAR mission for internal structure of Mathilde and Eros". Advances in Space Research. 33 (9): 1558–1563. Bibcode:2004AdSpR..33.1558C. doi:10.1016/S0273-1177(03)00452-6.
  • ^ Pon, Brian (30 June 1999). "Pavement Albedo". Heat Island Group. Archived from the original on 29 August 2007. Retrieved 27 August 2007.
  • ^ Kelley, M. S.; Gaffey, M. J.; Reddy, V. (12–16 March 2007). "Near-IR Spectroscopy and Possible Meteorite Analogs for Asteroid (253)". 38th Lunar and Planetary Science Conference. League City, Texas: Lunar & Planetary Institute. p. 2366. Bibcode:2007LPI....38.2366K.
  • ^ Blue, Jennifer (29 August 2007). "Categories for Naming Features on Planets and Satellites". USGS. Archived from the original on 24 August 2007. Retrieved 29 August 2007.
  • ^ Lang, Kenneth R. (2003). "2. Asteroids and meteorites, Size, color and spin". NASA's Cosmos. NASA. Archived from the original on 26 May 2024. Retrieved 29 August 2007.
  • ^ W. J. Merline; et al. (1998). "Search for Satellites of 253 Mathilde from Near-Earth Asteroid Rendezvous Flyby Data". Meteoritics & Planetary Science. 33 (S4): A105. Bibcode:1998M&PSA..33..105M. doi:10.1111/j.1945-5100.1998.tb01327.x.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=253_Mathilde&oldid=1226807373"

    Categories: 
    Minor planet object articles (numbered)
    253 Mathilde
    Background asteroids
    Discoveries by Johann Palisa
    Named minor planets
    Minor planets visited by spacecraft
    Slow rotating minor planets
    Cb-type asteroids (SMASS)
    Astronomical objects discovered in 1885
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Use dmy dates from October 2019
    Good articles
    Commons link from Wikidata
    CS1 maint: bot: original URL status unknown
    Articles with JPL SBDB identifiers
    Articles with MPC identifiers
     



    This page was last edited on 1 June 2024, at 23:22 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki