Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Theory  





2 References  














3ω-method






Deutsch
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


The 3ω-method (3 omega method) or 3ω-technique, is a measurement method for determining the thermal conductivities of bulk material (i.e. solid or liquid) and thin layers. The process involves a metal heater applied to the sample that is heated periodically. The temperature oscillations thus produced are then measured. The thermal conductivity and thermal diffusivity of the sample can be determined from their frequency dependence.

Theory[edit]

The 3ω-method can be accomplished by depositing a thin metal structure (generally a wire or a film) onto the sample to function as a resistive heater and a resistance temperature detector (RTD). The heater is driven with AC current at frequency ω, which induces periodic joule heating at frequency 2ω (since ) due to the oscillation of the AC signal during a single period.

There will be some delay between the heating of the sample and the temperature response which is dependent upon the thermal properties of the sensor/sample. This temperature response is measured by logging the amplitude and phase delay of the AC voltage signal from the heater across a range of frequencies (generally accomplished using a lock-in-amplifier).

Note, the phase delay of the signal is the lag between the heating signal and the temperature response. The measured voltage will contain both the fundamental and third harmonic components (ω and 3ω respectively), because the Joule heating of the metal structure induces oscillations in its resistance with frequency 2ω due to the temperature coefficient of resistance (TCR) of the metal heater/sensor as stated in the following equation:

,

where C0 is constant. Thermal conductivity is determined by the linear slope of ΔT vs. log(ω) curve. The main advantages of the 3ω-method are minimization of radiation effects and easier acquisition of the temperature dependence of the thermal conductivity than in the steady-state techniques. Although some expertise in thin film patterning and microlithography is required, this technique is considered as the best pseudo-contact method available.[1] (ch23)

The process was first published by David Cahill and Robert Pohl in the April 1987 issue of the Physical Review in a paper titled "Thermal Conductivity of Amorphous Solids above the Plateau".[2]

References[edit]

  1. ^ Rowe, David Michael. Thermoelectrics handbook : macro to nano / edited by D.M. Rowe. Boca Raton: CRC/Taylor & Francis, 2006. ISBN 0-8493-2264-2
  • ^ Cahill, David G.; Pohl, R. O. (1987-03-15). "Thermal conductivity of amorphous solids above the plateau". Physical Review B. 35 (8). American Physical Society (APS): 4067–4073. Bibcode:1987PhRvB..35.4067C. doi:10.1103/physrevb.35.4067. ISSN 0163-1829. PMID 9941934.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=3ω-method&oldid=1145272839"

    Categories: 
    Materials testing
    Heat conduction
    Hidden categories: 
    Articles lacking reliable references from August 2017
    All articles lacking reliable references
     



    This page was last edited on 18 March 2023, at 05:38 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki