Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Symptoms  



1.1  Crystal morphology and identification  







2 Genetics  





3 Diagnosis  



3.1  Types  







4 Treatment  





5 History  





6 See also  





7 References  





8 External links  














Cystinosis






العربية
Bosanski
Català
Deutsch
Español
فارسی
Français
Bahasa Indonesia
Italiano
Nederlands

Polski
Русский
Slovenščina
Српски / srpski
Suomi
Татарча / tatarça
Türkçe
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from AbderhaldenKaufmannLignac syndrome)

Cystinosis
Other namesCystine storage disease,[1] Abderhalden–Lignac–Kaufmann disease,[2] Abderhalden–Kaufmann–Lignac syndrome
Chemical structure of cystine formed from L-cysteine (under biological conditions)
SpecialtyEndocrinology Edit this on Wikidata

Cystinosis is a lysosomal storage disease characterized by the abnormal accumulation of cystine, the oxidized dimer of the amino acid cysteine.[3] It is a genetic disorder that follows an autosomal recessive inheritance pattern. It is a rare autosomal recessive disorder resulting from accumulation of free cystine in lysosomes, eventually leading to intracellular crystal formation throughout the body. Cystinosis is the most common cause of Fanconi syndrome in the pediatric age group. Fanconi syndrome occurs when the function of cells in renal tubules is impaired, leading to abnormal amounts of carbohydrates and amino acids in the urine, excessive urination, and low blood levels of potassium and phosphates.

Cystinosis was the first documented genetic disease belonging to the group of lysosomal storage disease disorders.[4] Cystinosis is caused by mutations in the CTNS gene that codes for cystinosin, the lysosomal membrane-specific transporter for cystine. Intracellular metabolism of cystine, as it happens with all amino acids, requires its transport across the cell membrane. After degradation of endocytosed protein to cystine within lysosomes, it is normally transported to the cytosol. But if there is a defect in the carrier protein, cystine is accumulated in lysosomes. As cystine is highly insoluble, when its concentration in tissue lysosomes increases, its solubility is immediately exceeded and crystalline precipitates are formed in almost all organs and tissues.[5]

However, the progression of the disease is not related to the presence of crystals in target tissues. Although tissue damage might depend on cystine accumulation, the mechanisms of tissue damage are not fully understood. Increased intracellular cystine profoundly disturbs cellular oxidative metabolism and glutathione status,[6] leading to altered mitochondrial energy metabolism, autophagy, and apoptosis.[7]

Cystinosis is usually treated with cysteamine, which is prescribed to decrease intralysosomal cystine accumulation.[8] However, the discovery of new pathogenic mechanisms and the development of an animal model of the disease may open possibilities for the development of new treatment modalities to improve long-term prognosis.[4]

Symptoms[edit]

There are three distinct types of cystinosis each with slightly different symptoms: nephropathic cystinosis, intermediate cystinosis, and non-nephropathic or ocular cystinosis. Infants affected by nephropathic cystinosis initially exhibit poor growth and particular kidney problems (sometimes called renal Fanconi syndrome). The kidney problems lead to the loss of important minerals, salts, fluids, and other nutrients. The loss of nutrients not only impairs growth, but may result in soft, bowed bones (hypophosphatemic rickets), especially in the legs. The nutrient imbalances in the body lead to increased urination, thirst, dehydration, and abnormally acidic blood (acidosis).

Slit-lamp photographs of three-year-old patient with nephropathic cystinosis before (left) and after (right) cysteamine eyedrop therapy. The drops dissolve the crystals in the cornea.

By about age two, cystine crystals may also be present in the cornea. The buildup of these crystals in the eye causes an increased sensitivity to light (photophobia). Without treatment, children with cystinosis are likely to experience complete kidney failure by about age ten. With treatment this may be delayed into the patients' teens or 20s. Other signs and symptoms that may occur in patients include muscle deterioration, blindness, inability to swallow, impaired sweating, decreased hair and skin pigmentation, diabetes, and thyroid and nervous system problems.

The signs and symptoms of intermediate cystinosis are the same as nephropathic cystinosis, but they occur at a later age. Intermediate cystinosis typically begins to affect individuals around age twelve to fifteen. Malfunctioning kidneys and corneal crystals are the main initial features of this disorder. If intermediate cystinosis is left untreated, complete kidney failure will occur, but usually not until the late teens to mid twenties.

People with non-nephropathic or ocular cystinosis do not usually experience growth impairment or kidney malfunction. The only symptom is photophobia due to cystine crystals in the cornea.

Crystal morphology and identification[edit]

Cystine crystals are hexagonal in shape and are colorless. They are not found often in alkaline urine due to their high solubility. The colorless crystals can be difficult to distinguish from uric acid crystals which are also hexagonal. Under polarized examination, the crystals are birefringent with a polarization color interference.[9]

Genetics[edit]

Cystinosis has an autosomal recessive pattern of inheritance.

Cystinosis occurs due to a mutation in the gene CTNS, located on chromosome 17, which codes for cystinosin, the lysosomal cystine transporter. Symptoms are first seen at about 3 to 18 months of age with profound polyuria (excessive urination), followed by poor growth, photophobia, and ultimately kidney failure by age 6 years in the nephropathic form.

All forms of cystinosis (nephropathic, juvenile and ocular) are autosomal recessive, which means that the trait is located on an autosomal chromosome, and only an individual who inherits two copies of the gene – one from both parents – will have the disorder. There is a 25% risk of having a child with the disorder, when both parents are carriers of an autosomal recessive trait.

Cystinosis affects approximately 1 in 100,000 to 200,000 newborns.[1] and there are only around 2,000 known individuals with cystinosis in the world [citation needed]. The incidence is higher in the province of Brittany, France, where the disorder affects 1 in 26,000 individuals.[10]

Diagnosis[edit]

Cystinosis is a rare genetic disorder[11] that causes an accumulation of the amino acid cystine within cells, forming crystals that can build up and damage the cells. These crystals negatively affect many systems in the body, especially the kidneys and eyes.[3]

The accumulation is caused by abnormal transport of cystine from lysosomes, resulting in a massive intra-lysosomal cystine accumulation in tissues. Via an as yet unknown mechanism, lysosomal cystine appears to amplify and alter apoptosis in such a way that cells die inappropriately, leading to loss of renal epithelial cells. This results in renal Fanconi syndrome,[12] and similar loss in other tissues can account for the short stature, retinopathy, and other features of the disease.

Definitive diagnosis and treatment monitoring are most often performed through measurement of white blood cell cystine level using tandem mass spectrometry.

Types[edit]

Treatment[edit]

Cystinosis is normally treated with cysteamine, which is available in capsules and in eye drops.[13] Cysteamine acts to solubilize the cystine by (1) forming a mixed disulfide cysteine-cysteamine and (2) reducing cystine to cysteine. People with cystinosis are also often given sodium citrate to treat the blood acidosis, as well as potassium and phosphorus supplements as well as others. If the kidneys become significantly impaired or fail, then treatment must be begun to ensure continued survival, up to and including renal transplantation.[14]

History[edit]

A historical case of cystinosis was originally termed Abderhalden–Kaufmann–Lignac syndrome (AKL syndrome), also called nephropathic cystinosis, which was observed to be an autosomal recessive renal disorder of childhood comprising cystinosis and renal rickets. It was named for Emil Abderhalden, Eduard Kaufmann and George Lignac.[15][16] Affected children are developmentally delayed with dwarfism, rickets and osteoporosis. Renal tubular disease is usually present causing aminoaciduria, glycosuria and hypokalemia. Cysteine deposition is most evident in the conjunctiva and cornea.


See also[edit]

References[edit]

  1. ^ a b "Cystinosis on Genetic home reference".
  • ^ "Abderhalden Kaufmann Lignac syndrome". rarediseases.info.nih.gov. Archived from the original on 15 May 2018. Retrieved 15 May 2018.
  • ^ a b A. Gahl, William; Jess G. Thoene; Jerry A. Schneider (2002). "Cystinosis". N Engl J Med. 347 (2): 111–121. doi:10.1056/NEJMra020552. PMID 12110740.
  • ^ a b Nesterova G, Gahl WA. Cystinosis: the evolution of a treatable disease. Pediatr Nephrol 2012;28:51–9.
  • ^ Gahl WA, Thoene JG, Schneider JA. Cystinosis. N Engl J Med 2002;347:111-121.
  • ^ Kumar A, Bachhawat AK. A futile cycle, formed between two ATP-dependent γ-glutamyl cycle enzymes, γ-glutamyl cysteine synthetase and 5-oxoprolinase: the cause of cellular ATP depletion in nephrotic cystinosis?; J Biosci 2010;35:21–25.
  • ^ Park MA, Thoene JG. Potential role of apoptosis in development of the cystinotic phenotype. Pediatr Nephrol 2005;20:441–446.
  • ^ Besouw M, Masereeuw R, Van den Heuvel L et al. Cysteamine: an old drug with new potential. Drug Discov Today 2013.
  • ^ Spencer, Daniel. "Cystine". CRYSTALS. Urinalysis (Texas Collaborative for Teaching Excellence). Retrieved 4 March 2012.
  • ^ Kalatzis, V; Cherqui S; Jean G; Cordier B; Cochat P; Broyer M; Antignac C (October 2001). "Characterization of a putative founder mutation that accounts for the high incidence of cystinosis in Brittany". J Am Soc Nephrol. 12 (10): 2170–2174. doi:10.1681/ASN.V12102170. PMID 11562417. Retrieved 31 March 2011.
  • ^ "Cystinosis". Archived from the original on 2011-07-18. Retrieved 2008-07-20.
  • ^ Howard G. WORTHEN; Robert A. GOOD (1958). "The de Toni-Fanconi Syndrome with Cystinosis". Am J Dis Child. 95 (6): 653–688. doi:10.1001/archpedi.1958.02060050657011. PMID 13532161.
  • ^ Besouw, Martine; Masereeuw, Rosalinde; Van Den Heuvel, Lambert; Levtchenko, Elena (2013). "Cysteamine: An old drug with new potential". Drug Discovery Today. 18 (15–16): 785–792. doi:10.1016/j.drudis.2013.02.003. PMID 23416144.
  • ^ Nesterova, Galina; Gahl, William A. (October 6, 2016). "Cystinosis". GeneReviews. University of Washington, Seattle. PMID 20301574.
  • ^ B.G. Firkin & J.A.Whitworth (1987). Dictionary of Medical Eponyms. Parthenon Publishing. ISBN 1-85070-333-7
  • ^ Who Named It?
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Cystinosis&oldid=1218278567"

    Categories: 
    Autosomal recessive disorders
    Amino acid metabolism disorders
    Lysosomal storage diseases
    Rare diseases
    Syndromes affecting the kidneys
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from April 2022
     



    This page was last edited on 10 April 2024, at 19:31 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki