Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Theory  





2 Acoustic performance  





3 In multi-driver speakers  





4 See also  





5 References  














Acoustic suspension






Català
Français
Italiano
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


An acoustic suspension loudspeaker is a type of speaker enclosure in which a loudspeaker driver is mounted in a cabinet with a closed back and no ports or vents.

Acoustic suspension is a loudspeaker cabinet design that uses one or more loudspeaker drivers mounted in a sealed box. Acoustic suspension systems reduce bass distortion which can be caused by stiff suspensions required on drivers used for open cabinet designs.

A compact acoustic suspension loudspeaker was described in 1954 by Edgar Villchur,[1] and it was brought to commercial production by Villchur and Henry Kloss with the founding of Acoustic Research in Cambridge, Massachusetts.[2] In 1960, Villchur[3] reiterated that: The first aim of the acoustic suspension design, over and above uniformity of frequency response, compactness, and extension of response into the low-bass range, is to reduce significantly the level of bass distortion that had previously been tolerated in loudspeakers. This is accomplished by substituting an air-spring for a mechanical one. Subsequently, the theory of closed-box loudspeakers was extensively described by Richard H. Small.[4][5]

Speaker cabinets with acoustic suspension can provide well-controlled bass response, especially in comparison with an equivalently-sized speaker enclosure that has a bass reflex port or vent. The bass vent boosts low-frequency output, but with the tradeoff of introducing phase delay and accuracy problems in reproducing transient signals. Sealed boxes are generally less efficient than a bass-reflex cabinet for the same low-frequency cut-off and cabinet volume,[6] so a sealed-box speaker cabinet will need more electrical power to deliver the same amount of acoustic low-frequency bass output.

Theory[edit]

The acoustic suspension woofer uses the elastic cushion of air within a sealed enclosure to provide the restoring force for the woofer diaphragm. The cushion of air acts like a compression spring. This is in contrast to the stiff physical suspension built into the driver of conventional speakers. Because the air in the cabinet serves to control the woofer's excursion, the physical stiffness of the driver can be reduced. The air suspension provides a more linear restoring force for the woofer's diaphragm, enabling it to oscillate a greater distance (excursion) in a linear fashion. This is a requirement for low distortion and loud reproduction of deep bass by drivers with relatively small cones.[1]

Even though acoustic suspension cabinets are often called sealed box designs, they are not entirely airtight. A small amount of airflow must be allowed so that the speaker can adjust to changes in atmospheric pressure. A semi-porous cone surround allows enough air movement for this purpose. Most Acoustic Research designs used a PVA sealer on the foam surrounds to enable a longer component life and enhance performance. The venting was via the cloth spider and cloth dust caps, and not so much through the cone surround.

Acoustic suspension woofers remain popular in hi-fi systems due to their low distortion. They also have lower group delay at low frequencies compared to bass reflex designs, resulting in better transient response. However, the audibility of this benefit is somewhat contested. As noted by Small,[6] an analysis performed by Thiele[7] suggested that the differences among correctly adjusted systems of both types are likely to be inaudible.

In the 2000s, most subwoofers, bass amplifier cabinets and sound reinforcement system speaker cabinets use bass reflex ports, rather than a sealed-box design, in order to obtain more extended low-frequency response and to get higher sound pressure level (SPL). The speaker enclosure designers and their customers view the risk of increased distortion and phase delay as an acceptable price to pay for increased bass output and higher maximum SPL.

Acoustic performance[edit]

The two most common types of speaker enclosure are acoustic suspension (sometimes called pneumatic suspension) and bass reflex. In both cases, the tuning affects the lower end of the driver's response, but above a certain frequency, the driver itself becomes the dominant factor and the size of the enclosure and ports (if any) become irrelevant.

In general, acoustic suspension systems (driver plus enclosure) have a second-order acoustic (12 dB/octave) roll-off below the −3 dB point. Bass reflex designs have a fourth-order acoustic roll-off (24 dB/octave). Given a driver that is suitable for either type of enclosure, the ideal bass reflex cabinet will be larger, have a lower −3 dB point, but both systems will have equal voltage sensitivity in the passband.

WinISD comparison of a FaitalPRO 5FE120 woofer in a sealed (yellow) and ported (cyan) cabinet. The ported cabinet demonstrates increased bass output in the 50–100 Hz range.

On the right is a simulation of the low-frequency response of a typical 5" mid-woofer, the FaitalPRO 5FE120[8] mid-woofer generated, obtained using WinISD,[9] for ideal sealed (yellow) and ported (cyan) enclosure configurations. The ported version adds about an octave of bass extension, dropping the −3 dB point from 100 Hz to 50 Hz, but the tradeoff is that the cabinet size is more than twice as large, 8 litres of interior space versus 3.8 litres. It is also worth noting that above 200 Hz the simulations converge and there is no difference in output, and below 32 Hz the sealed enclosure produces more low-frequency output.

Small[4] presented the physical efficiency-bandwidth-volume limitation of closed-box system design. By considering the variation in the reference efficiency of the driver operating in the system enclosure, the relationship of maximum reference efficiency to cut-off frequency and enclosure volume for closed-box loudspeaker systems was determined. Subsequently, Small[10] derived a similar relationship for vented-box loudspeaker systems. When Small[6] compared these two sets of results, they revealed that the closed-box system has a maximum theoretical value of reference efficiency that is 2.9 dB lower than that of the vented-box system. This suggests that an acoustic suspension loudspeaker with the same enclosure volume and low-frequency −3 dB cut-off as a vented-box system will be up to 2.9 dB less sensitive than its counterpart. If the reference efficiency and cut-off frequency of the two systems is the same, then the enclosure volume of the acoustic suspension loudspeaker will be approximately twice as large as that of the vented system.

In multi-driver speakers[edit]

While boxed hi-fi speakers are often described as being acoustic suspension or ported (bass reflex), depending on the absence or presence of a port tube or vent, it is also true that, in typical box speakers with more than two drivers, the midrange drivers between the woofer and tweeter are usually designed as acoustic suspension, with a separate, sealed air-space, even if the woofer itself is not.[citation needed] However, one notable exception to this was the Sonus Faber Stradivari Homage, which used a ported enclosure for the midrange.[11]

See also[edit]

References[edit]

  1. ^ a b Villchur, Edgar M. (1954). "Revolutionary Loudspeaker and Enclosure" (PDF). Audio (October): 25–27, 100. Retrieved 2022-05-14.
  • ^ Schoenherr, Steven E. (2008). "Edgar Villchur and the Acoustic Suspension Loudspeaker". Audio Engineering Society. Retrieved 2022-05-14.
  • ^ Villchur, Edgar M. (1960). "Another Look at Acoustic Suspension" (PDF). Audio (January): 24–25, 75. Retrieved 2022-05-14.
  • ^ a b Small, R. H. (1972). "Closed-Box Loudspeaker Systems–Part 1: Analysis". Journal of the Audio Engineering Society. 20 (June): 363–372.
  • ^ Small, R. H. (1973). "Closed-Box Loudspeaker Systems–Part 2: Synthesis". Journal of the Audio Engineering Society. 21 (February): 11–18.
  • ^ a b c Small, R. H. (1973). "Vented-Box Loudspeaker Systems–Part 2: Large-Signal Analysis". Journal of the Audio Engineering Society. 21 (July/August): 438–444.
  • ^ Thiele, A. N. (1971). "Loudspeakers in Vented Boxes: Part 2". Journal of the Audio Engineering Society. 19 (June): 471–483.
  • ^ "FaitalPRO 5FE120 (8Ω)". Retrieved 2022-05-14.
  • ^ "WinISD Loudspeaker Simulation Software". Linearteam. Retrieved 2022-05-14.
  • ^ Small, R. H. (1973). "Vented-Box Loudspeaker Systems–Part 1: Small-Signal Analysis". Journal of the Audio Engineering Society. 21 (June): 363–372.
  • ^ Atkinson, John (2005). "Sonus Faber Stradivari Homage Loudspeaker Measurements". Stereophile (January). Retrieved 2022-05-14.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Acoustic_suspension&oldid=1228503382"

    Categories: 
    Acoustics
    Loudspeaker technology
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Use American English from November 2023
    All Wikipedia articles written in American English
    All articles with unsourced statements
    Articles with unsourced statements from April 2024
     



    This page was last edited on 11 June 2024, at 16:01 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki