Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 History  





2 Production  



2.1  Niche or laboratory methods  







3 Reactions  





4 Uses  



4.1  Military uses  





4.2  Biocide  





4.3  Chemical precursor  







5 Health risks  



5.1  Cigarette smoke  





5.2  Chemotherapy metabolite  





5.3  Endogenous production  







6 Analytical methods  





7 References  














Acrolein






العربية
Azərbaycanca
تۆرکجه
Беларуская
Català
Čeština
Deutsch
Eesti
Ελληνικά
Español
Esperanto
Euskara
فارسی
Français
Galego

Հայերեն
ि
Bahasa Indonesia
Italiano
עברית

Қазақша
Кыргызча
Latviešu
Lietuvių
Magyar

Bahasa Melayu
Nederlands

Oʻzbekcha / ўзбекча
Polski
Português
Română
Русский
Slovenščina
Српски / srpski
Srpskohrvatski / српскохрватски
Suomi
Svenska
Тоҷикӣ
Türkçe
Українська
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Acrolein
Names
Preferred IUPAC name

Prop-2-enal

Other names

Acraldehyde[1]
Acrylic aldehyde[1]
Allyl aldehyde[1]
Ethylene aldehyde
Acrylaldehyde[1]

Identifiers

CAS Number

3D model (JSmol)

  • Interactive image
  • ChEBI
    ChEMBL
    ChemSpider
    ECHA InfoCard 100.003.141 Edit this at Wikidata
    EC Number
    • 203-453-4

    IUPHAR/BPS

    KEGG

    PubChem CID

    RTECS number
    • AS1050000
    UNII
    UN number 1092

    CompTox Dashboard (EPA)

    • InChI=1S/C3H4O/c1-2-3-4/h2-3H,1H2 checkY

      Key: HGINCPLSRVDWNT-UHFFFAOYSA-N checkY

    • InChI=1/C3H4O/c1-2-3-4/h2-3H,1H2

      Key: HGINCPLSRVDWNT-UHFFFAOYAQ

    • O=CC=C

    • C=CC=O

    Properties

    Chemical formula

    C3H4O
    Molar mass 56.064 g·mol−1
    Appearance Colorless to yellow liquid. Colorless gas in smoke.
    Odor Acrid, Foul, Irritating
    Density 0.839 g/mL
    Melting point −88 °C (−126 °F; 185 K)
    Boiling point 53 °C (127 °F; 326 K)

    Solubility in water

    Appreciable (> 10%)
    Vapor pressure 210 mmHg[1]
    Hazards[3]
    Occupational safety and health (OHS/OSH):

    Main hazards

    Highly poisonous. Causes severe irritation to exposed membranes. Extremely flammable liquid and vapor.
    GHS labelling:

    Pictograms

    GHS02: Flammable GHS05: Corrosive GHS06: Toxic GHS08: Health hazard GHS09: Environmental hazard

    Signal word

    Danger

    Hazard statements

    H225, H300, H311, H314, H330, H410

    Precautionary statements

    P210, P233, P240, P241, P242, P243, P260, P264, P270, P271, P273, P280, P284, P301+P310, P301+P330+P331, P302+P352, P303+P361+P353, P304+P340, P305+P351+P338, P310, P312, P320, P321, P322, P330, P361, P363, P370+P378, P391, P403+P233, P403+P235, P405, P501
    NFPA 704 (fire diamond)
    NFPA 704 four-colored diamondHealth 4: Very short exposure could cause death or major residual injury. E.g. VX gasFlammability 3: Liquids and solids that can be ignited under almost all ambient temperature conditions. Flash point between 23 and 38 °C (73 and 100 °F). E.g. gasolineInstability 3: Capable of detonation or explosive decomposition but requires a strong initiating source, must be heated under confinement before initiation, reacts explosively with water, or will detonate if severely shocked. E.g. hydrogen peroxideSpecial hazards (white): no code
    4
    3
    3
    Flash point −26 °C (−15 °F; 247 K)

    Autoignition
    temperature

    278 °C (532 °F; 551 K)
    Explosive limits 2.8-31%[1]
    Lethal dose or concentration (LD, LC):

    LC50 (median concentration)

    875 ppm (mouse, 1 min)
    175 ppm (mouse, 10 min)
    150 ppm (dog, 30 min)
    8 ppm (rat, 4 hr)
    375 ppm (rat, 10 min)
    25.4 ppm (hamster, 4 hr)
    131 ppm (rat, 30 min)[2]

    LCLo (lowest published)

    674 ppm (cat, 2 hr)[2]
    NIOSH (US health exposure limits):

    PEL (Permissible)

    TWA 0.1 ppm (0.25 mg/m3)[1]

    REL (Recommended)

    TWA 0.1 ppm (0.25 mg/m3) ST 0.3 ppm (0.8 mg/m3)[1]

    IDLH (Immediate danger)

    2 ppm[1]
    Safety data sheet (SDS) Sigma-Aldrich SDS
    Related compounds

    Related alkenals

    Crotonaldehyde

    cis-3-Hexenal
    (E,E)-2,4-Decadienal

    Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

    checkY verify (what is checkY☒N ?)

    Infobox references

    Acrolein (systematic name: propenal) is the simplest unsaturated aldehyde. It is a colorless liquid with a foul and acrid aroma. The smell of burnt fat (as when cooking oil is heated to its smoke point) is caused by glycerol in the burning fat breaking down into acrolein. It is produced industrially from propene and mainly used as a biocide and a building block to other chemical compounds, such as the amino acid methionine.

    History[edit]

    Acrolein was first named and characterized as an aldehyde by the Swedish chemist Jöns Jacob Berzelius in 1839. He had been working with it as a thermal degradation product of glycerol, a material used in the manufacture of soap. The name is a contraction of 'acrid' (referring to its pungent smell) and 'oleum' (referring to its oil-like consistency). In the 20th century, acrolein became an important intermediate for the industrial production of acrylic acid and acrylic plastics.[4]

    Production[edit]

    Acrolein is prepared industrially by oxidation of propene. The process uses air as the source of oxygen and requires metal oxidesasheterogeneous catalysts:[5]

    CH3CH=CH2 + O2 → CH2=CHCHO + H2O

    About 500,000 tons of acrolein are produced in this way annually in North America, Europe, and Japan. Additionally, all acrylic acid is produced via the transient formation of acrolein.

    Propane represents a promising but challenging feedstock for the synthesis of acrolein (and acrylic acid).The main challenge is in fact the overoxidation to this acid.

    When glycerol (also called glycerin) is heated to 280 °C, it decomposes into acrolein:

    (CH2OH)2CHOH → CH2=CHCHO + 2 H2O

    This route is attractive when glycerol is co-generated in the production of biodiesel from vegetable oils or animal fats. The dehydration of glycerol has been demonstrated but has not proven competitive with the route from petrochemicals.[6][7]

    Niche or laboratory methods[edit]

    The original industrial route to acrolein, developed by Degussa, involves condensation of formaldehyde and acetaldehyde:

    HCHO + CH3CHO → CH2=CHCHO + H2O

    Acrolein may also be produced on lab scale by the action of potassium bisulfate on glycerol (glycerine).[8]

    Reactions[edit]

    Acrolein is a relatively electrophilic compound and a reactive one, hence its high toxicity. It is a good Michael acceptor, hence its useful reaction with thiols. It forms acetals readily, a prominent one being the spirocycle derived from pentaerythritol, diallylidene pentaerythritol. Acrolein participates in many Diels-Alder reactions, even with itself. Via Diels-Alder reactions, it is a precursor to some commercial fragrances, including lyral, norbornene-2-carboxaldehyde, and myrac aldehyde.[5] The monomer 3,4-epoxycyclohexylmethyl-3',4'-epoxycyclohexane carboxylate is also produced from acrolein via the intermediacy of tetrahydrobenzaldehyde.

    Uses[edit]

    Military uses[edit]

    Acrolein was used in warfare due to its irritant and blistering properties. The French used the chemical in their hand grenades and artillery shells[9] during World War I under the name "Papite".[10]

    Biocide[edit]

    Acrolein is mainly used as a contact herbicide to control submersed and floating weeds, as well as algae, in irrigation canals. It is used at a level of 10 ppm in irrigation and recirculating waters. In the oil and gas industry, it is used as a biocide in drilling waters, as well as a scavenger for hydrogen sulfide and mercaptans.[5]

    Chemical precursor[edit]

    A number of useful compounds are made from acrolein, exploiting its bifunctionality. The amino acid methionine is produced by addition of methanethiol followed by the Strecker synthesis. Acrolein condenses with acetaldehyde and amines to give methylpyridines.[11] It is also an intermediate in the Skraup synthesisofquinolines.

    Acrolein will polymerize in the presence of oxygen and in water at concentrations above 22%. The color and texture of the polymer depends on the conditions. The polymer is a clear, yellow solid. In water, it will form a hard, porous plastic.[citation needed]

    Acrolein has been used as a fixative in preparation of biological specimens for electron microscopy.[12]

    Health risks[edit]

    Acrolein is toxic and is a strong irritant for the skin, eyes, and nasal passages.[5] The main metabolic pathway for acrolein is the alkylationofglutathione. The WHO suggests a "tolerable oral acrolein intake" of 7.5 μg per day per kg of body weight. Although acrolein occurs in French fries (and other fried foods), the levels are only a few μg per kg.[13] In response to occupational exposures to acrolein, the US Occupational Safety and Health Administration has set a permissible exposure limit at 0.1 ppm (0.25 mg/m3) at an eight-hour time-weighted average.[14] Acrolein acts in an immunosuppressive manner and may promote regulatory cells,[15] thereby preventing the generation of allergies on the one hand, but also increasing the risk of cancer.

    Acrolein was identified as one of the chemicals involved in the 2019 Kim Kim River toxic pollution incident.[16]

    Cigarette smoke[edit]

    Connections exist between acrolein gas in the smoke from tobacco cigarettes and the risk of lung cancer.[17] Acrolein is one of seven toxicantsincigarette smoke that are most associated with respiratory tract carcinogenesis.[18] The mechanism of action of acrolein appears to involve induction of increased reactive oxygen species and DNA damage related to oxidative stress.[19]

    In terms of the "noncarcinogenic health quotient"[jargon] for components in cigarette smoke, acrolein dominates, contributing 40 times more than the next component, hydrogen cyanide.[20] The acrolein content in cigarette smoke depends on the type of cigarette and added glycerin, making up to 220 μg acrolein per cigarette.[21][22] Importantly, while the concentration of the constituents in mainstream smoke can be reduced by filters, this has no significant effect on the composition of the side-stream smoke where acrolein usually resides, and which is inhaled by passive smoking.[23][24] E-cigarettes, used normally, only generate "negligible" levels of acrolein (less than 10 μg "per puff").[25][26]

    Chemotherapy metabolite[edit]

    Cyclophosphamide and ifosfamide treatment results in the production of acrolein.[27] Acrolein produced during cyclophosphamide treatment collects in the urinary bladder and if untreated can cause hemorrhagic cystitis.

    Endogenous production[edit]

    Acrolein is a component of reuterin.[28] Reuterin can be produced by gut microbes when glycerol is present. Microbe-produced reuterin is a potential resource of acrolein.[29]

    Analytical methods[edit]

    The "acrolein test" is for the presence of glycerinorfats. A sample is heated with potassium bisulfate, and acrolein is released if the test is positive. When a fat is heated strongly in the presence of a dehydrating agent such as potassium bisulfate (KHSO
    4
    ), the glycerol portion of the molecule is dehydrated to form the unsaturated aldehyde, acrolein (CH2=CH–CHO), which has the odor peculiar to burnt cooking grease. More modern methods exist.[13]

    In the US, EPA methods 603 and 624.1 are designed to measure acrolein in industrial and municipal wastewater streams.[30][31]

    References[edit]

    1. ^ a b c d e f g h i NIOSH Pocket Guide to Chemical Hazards. "#0011". National Institute for Occupational Safety and Health (NIOSH).
  • ^ a b "Acrolein". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  • ^ "Archived copy". Archived from the original on 2015-04-02. Retrieved 2015-03-26.{{cite web}}: CS1 maint: archived copy as title (link)
  • ^ Jan F. Stevens and Claudia S. Maier, "Acrolein: Sources, metabolism, and biomolecular interactions relevant to human health and disease", Mol Nutr Food Res. 2008 Jan; 52(1): 7–25.
  • ^ a b c d Dietrich Arntz; Achim Fischer; Mathias Höpp; et al. (2012). "Acrolein and Methacrolein". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a01_149.pub2. ISBN 978-3527306732.
  • ^ Martin, Andreas; Armbruster, Udo; Atia, Hanan (2012). "Recent developments in dehydration of glycerol toward acrolein over heteropolyacids". European Journal of Lipid Science and Technology. 114 (1): 10–23. doi:10.1002/ejlt.201100047.
  • ^ Abdullah, Anas; Zuhairi Abdullah, Ahmad; Ahmed, Mukhtar; Khan, Junaid; Shahadat, Mohammad; Umar, Khalid; Alim, Md Abdul (March 2022). "A review on recent developments and progress in sustainable acrolein production through catalytic dehydration of bio-renewable glycerol". Journal of Cleaner Production. 341: 130876. Bibcode:2022JCPro.34130876A. doi:10.1016/j.jclepro.2022.130876. S2CID 246853148.
  • ^ Homer Adkins; W. H. Hartung (1926). "Acrolein". Organic Syntheses. 6: 1. doi:10.15227/orgsyn.006.0001; Collected Volumes, vol. 1, p. 15.
  • ^ Prentiss, Augustin Mitchell; Fisher, George J. B. (1937). Chemicals in War: A Treatise on Chemical Warfare. McGraw-Hill Book Company, Incorporated. p. 139. Retrieved 21 November 2021.
  • ^ Eisler, Ronald (1994). Acrolein Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Department of the Interior, National Biological Survey. Retrieved 21 November 2021.
  • ^ Shimizu, S.; Watanabe, N.; Kataoka, T.; Shoji, T.; Abe, N.; Morishita, S.; Ichimura, H. "Pyridine and Pyridine Derivatives". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a22_399. ISBN 978-3527306732.
  • ^ M J Dykstra, L E Reuss (2003). Biological Electron Microscopy: Theory, Techniques, and Troubleshooting. Springer. ISBN 0-306-47749-1.
  • ^ a b Abraham, Klaus; Andres, Susanne; Palavinskas, Richard; Berg, Katharina; Appel, Klaus E.; Lampen, Alfonso (2011). "Toxicology and risk assessment of acrolein in food". Mol. Nutr. Food Res. 55 (9): 1277–1290. doi:10.1002/mnfr.201100481. PMID 21898908.
  • ^ CDC - NIOSH Pocket Guide to Chemical Hazards
  • ^ Roth-Walter, Franziska; Bergmayr, Cornelia; Meitz, Sarah; Buchleitner, Stefan; Stremnitzer, Caroline; Fazekas, Judit; Moskovskich, Anna; Müller, Mario A.; Roth, Georg A.; Manzano-Szalai, Krisztina; Dvorak, Zdenek; Neunkirchner, Alina; Jensen-Jarolim, Erika (2017). "Janus-faced Acrolein prevents allergy, but accelerates tumor growth by promoting immunoregulatory Foxp3+ cells: Mouse model for passive respiratory exposure". Scientific Reports. 7: 45067. Bibcode:2017NatSR...745067R. doi:10.1038/srep45067. PMC 5362909. PMID 28332605.
  • ^ Tara Thiagarajan (Mar 15, 2019). "8 Chemicals Have Been Identified in Pasir Gudang's Kim Kim River, Here's What They Are". World of Buzz.
  • ^ Feng, Z; Hu W; Hu Y; Tang M (October 2006). "Acrolein is a major cigarette-related lung cancer agent: Preferential binding at p53 mutational hotspots and inhibition of DNA repair". Proceedings of the National Academy of Sciences. 103 (42): 15404–15409. Bibcode:2006PNAS..10315404F. doi:10.1073/pnas.0607031103. PMC 1592536. PMID 17030796.
  • ^ Cunningham FH, Fiebelkorn S, Johnson M, Meredith C. A novel application of the Margin of Exposure approach: segregation of tobacco smoke toxicants. Food Chem Toxicol. 2011 Nov;49(11):2921-33. doi: 10.1016/j.fct.2011.07.019. Epub 2011 Jul 23. PMID 21802474
  • ^ Li L, Jiang L, Geng C, Cao J, Zhong L. The role of oxidative stress in acrolein-induced DNA damage in HepG2 cells. Free Radic Res. 2008 Apr;42(4):354-61. doi: 10.1080/10715760802008114 PMID 18404534
  • ^ Haussmann, Hans-Juergen (2012). "Use of Hazard Indices for a Theoretical Evaluation of Cigarette Smoke Composition". Chem. Res. Toxicol. 25 (4): 794–810. doi:10.1021/tx200536w. PMID 22352345.
  • ^ Daher, N; Saleh, R; Jaroudi, E; Sheheitli, H; Badr, T; Sepetdjian, E; Al Rashidi, M; Saliba, N; Shihadeh, A (Jan 2010). "Comparison of carcinogen, carbon monoxide, and ultrafine particle emissions from narghile waterpipe and cigarette smoking: Sidestream smoke measurements and assessment of second-hand smoke emission factors". Atmos Environ. 44 (1): 8–14. Bibcode:2010AtmEn..44....8D. doi:10.1016/j.atmosenv.2009.10.004. PMC 2801144. PMID 20161525.
  • ^ Herrington, JS; Myers, C (2015). "Electronic cigarette solutions and resultant aerosol profiles". J Chromatogr A. 1418: 192–9. doi:10.1016/j.chroma.2015.09.034. PMID 26422308.
  • ^ Blair, SL; Epstein, SA; Nizkorodov, SA; Staimer, N (2015). "A Real-Time Fast-Flow Tube Study of VOC and Particulate Emissions from Electronic, Potentially Reduced-Harm, Conventional, and Reference Cigarettes". Aerosol Sci Technol. 49 (9): 816–827. Bibcode:2015AerST..49..816B. doi:10.1080/02786826.2015.1076156. PMC 4696598. PMID 26726281.
  • ^ Sopori, M (May 2002). "Effects of cigarette smoke on the immune system". Nat. Rev. Immunol. 2 (5): 372–7. doi:10.1038/nri803. PMID 12033743. S2CID 26116099.
  • ^ McNeill, A, SC (2015). "E - cigarettes: an evidence update A report commissioned by Public Health England" (PDF). www.gov.uk. UK: Public Health England. pp. 76–78. Retrieved 20 August 2015.{{cite web}}: CS1 maint: multiple names: authors list (link)
  • ^ Sleiman, M (2016). "Emissions from electronic cigarettes: Key parameters affecting the release of harmful chemicals". Environmental Science and Technology. 50 (17): 9644–9651. Bibcode:2016EnST...50.9644S. doi:10.1021/acs.est.6b01741. PMID 27461870. S2CID 31872198.
  • ^ Paci, A; Rieutord, A; Guillaume, D; et al. (March 2000). "Quantitative high-performance liquid chromatography chromatographic determination of acrolein in plasma after derivatization with Luminarin 3". Journal of Chromatography B. 739 (2): 239–246. doi:10.1016/S0378-4347(99)00485-5. PMID 10755368.
  • ^ Engels, Christina; Schwab, Clarissa; Zhang, Jianbo; Stevens, Marc J. A.; Bieri, Corinne; Ebert, Marc-Olivier; McNeill, Kristopher; Sturla, Shana J.; Lacroix, Christophe (2016-11-07). "Acrolein contributes strongly to antimicrobial and heterocyclic amine transformation activities of reuterin". Scientific Reports. 6 (1): 36246. Bibcode:2016NatSR...636246E. doi:10.1038/srep36246. ISSN 2045-2322. PMC 5098142. PMID 27819285.
  • ^ Zhang, Jianbo; Sturla, Shana; Lacroix, Christophe; Schwab, Clarissa (2018-03-07). Johnson, Eric A. (ed.). "Gut Microbial Glycerol Metabolism as an Endogenous Acrolein Source". mBio. 9 (1): e01947–17. doi:10.1128/mBio.01947-17. ISSN 2161-2129. PMC 5770549. PMID 29339426.
  • ^ Appendix A To Part 136 Methods For Organic Chemical Analysis of Municipal and Industrial Wastewater, Method 603—Acrolein And Acrylonitrile>
  • ^ Method 624.1 — Purgables by GC-MS>

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Acrolein&oldid=1231742246"

    Categories: 
    Alkenals
    Hazardous air pollutants
    IARC Group 2A carcinogens
    Lachrymatory agents
    Pulmonary agents
    Foul-smelling chemicals
    Hidden categories: 
    CS1 maint: archived copy as title
    CS1 maint: multiple names: authors list
    Chemical articles with multiple compound IDs
    Multiple chemicals in an infobox that need indexing
    ECHA InfoCard ID from Wikidata
    Chembox having GHS data
    Articles containing unverified chemical infoboxes
    Chembox image size set
    Articles with short description
    Short description matches Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from March 2020
    All articles that are too technical
    Wikipedia articles that are too technical from January 2023
    All articles needing expert attention
    Articles needing expert attention from January 2023
    Articles with GND identifiers
    Articles with J9U identifiers
    Articles with LCCN identifiers
    Articles with NDL identifiers
    Articles with NKC identifiers
     



    This page was last edited on 30 June 2024, at 00:51 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki