Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 

















Aerozine 50






Čeština
Deutsch
Ελληνικά
Français
Galego

Bahasa Indonesia
Italiano
Nederlands

Polski
Português
Русский
Suomi
Українська
Tiếng Vit
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Aerozine 50 is a 50:50 mix by weight of hydrazine and unsymmetrical dimethylhydrazine (UDMH),[1][2] developed in the late 1950s by Aerojet General Corporation as a storable, high-energy, hypergolic fuel for the Titan II ICBM rocket engines. Aerozine continues in wide use as a rocket fuel, typically with dinitrogen tetroxide as the oxidizer, with which it is hypergolic. Aerozine 50 is more stable than hydrazine alone, and has a higher density and boiling point than UDMH alone.

Pure hydrazine has a higher performance than Aerozine 50, but an inconvenient freezing point of 2 °C.[3] A mix of hydrazine and UDMH has a far lower freezing point due to freezing-point depression. In addition, UDMH is a more stable molecule; this reduces the chances of straight hydrazine decomposing unexpectedly, increasing safety and allowing the blend to be used as a coolant in regeneratively cooled engines.

This type of fuel is mainly used for interplanetary probes and spacecraft propulsion. Unlike other more common propellants like liquid oxygenorliquid hydrogen, Aerozine 50 is liquid at room temperature and can be stored in liquid state without significant boil off, thus making it a storable propellant better suited for long-term interplanetary missions. Aerozine 50 was largely used in ICBMs and in their derivative launchers such as the core stages of the Titan-II/III/IV rocket because an ICBM requires long-term storage and launch on short notice; the rocket must be stored already fueled. This fuel was also used in ICBM-derived upper stages, such as the Delta II rocket. It was also used by the Apollo Lunar Module and the Service Propulsion System engine in the Apollo CSM. The Ariane 1 through Ariane 4 family used a related fuel, a mixture of 75% UDMH and 25% hydrazine hydrate called UH 25.

Aerozine is not used as a monopropellant (a propellant that is not mixed with anything). The extra stability conferred by the methyl groups affects reactivity and thrust.

In 1980, a leakage of Aerozine 50 resulted in the 1980 Damascus Titan missile explosion. The leak occurred due to puncture of the first-stage Titan fuel tank by a dropped tool. The initial explosion removed the 740-ton silo door and ejected the second stage and warhead out of the silo. The Titan's second stage exploded, and the W53 warhead landed 30 meters from the silo portal without detonating or leaking fissile material.

Alternatives[edit]

Hydrazine may also be mixed with monomethyl hydrazine (MMH). Because MMH is slightly denser, net performance is increased slightly.[citation needed]

A potentially novel hypergolic alternative has been developed based on tertiary amine azides – called CINCH (Competitive Impulse Non-Carcinogenic Hypergol) and the name of the compound is 2-Dimethylaminoethylazide.[4][5]

Trivia[edit]

According to John D. Clark, the propellant community disliked and ignored brandnames such as Aerojet's Aerozine, preferring its own jargon of engineering acronyms and nicknames. This particular mixture was called "50–50".[2]

See also[edit]

References[edit]

  1. ^ "Aerozine50 Specifications & DOT Shipping Information" (PDF). NASA. October 5, 2006. Archived from the original (PDF) on March 26, 2014.
  • ^ a b Clark, J. D.; Asimov, Isaac (1972). Ignition! an informal history of liquid rocket propellants. Rutgers University Press. p. 45. ISBN 978-0-8135-0725-5.
  • ^ Sutton, George P. (2006). History of liquid propellant rocket engines. Reston, Va.: American Institute of Aeronautics and Astronautics. p. 383. ISBN 1-56347-649-5. OCLC 63680957.
  • ^ "Army Develops New Fuel". Spacedaily.com. February 23, 2000. Retrieved July 12, 2014.
  • ^ McQuaid, Michael J. (April 2004). The Structure of Secondary 2-Azidoethanamines: A Hypergolic Fuel vs. a Nonhypergolic Fuel (PDF) (Technical report). Army Research Laboratory. ARL-TR-3176. Archived from the original (PDF) on 2013-09-03. Retrieved 2012-03-02.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Aerozine_50&oldid=1227622638"

    Categories: 
    Rocket fuels
    Hydrazines
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from August 2021
     



    This page was last edited on 6 June 2024, at 21:16 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki