Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Examples  





2 Existence of an algebraic closure and splitting fields  





3 Separable closure  





4 See also  





5 References  














Algebraic closure






Čeština
Deutsch
Español
Esperanto
Français

Italiano
עברית
Nederlands

Português
Română
Suomi

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inmathematics, particularly abstract algebra, an algebraic closure of a field K is an algebraic extensionofK that is algebraically closed. It is one of many closures in mathematics.

Using Zorn's lemma[1][2][3] or the weaker ultrafilter lemma,[4][5] it can be shown that every field has an algebraic closure, and that the algebraic closure of a field K is unique up toanisomorphism that fixes every member of K. Because of this essential uniqueness, we often speak of the algebraic closure of K, rather than an algebraic closure of K.

The algebraic closure of a field K can be thought of as the largest algebraic extension of K. To see this, note that if L is any algebraic extension of K, then the algebraic closure of L is also an algebraic closure of K, and so L is contained within the algebraic closure of K. The algebraic closure of K is also the smallest algebraically closed field containing K, because if M is any algebraically closed field containing K, then the elements of M that are algebraic over K form an algebraic closure of K.

The algebraic closure of a field K has the same cardinalityasKifK is infinite, and is countably infiniteifK is finite.[3]

Examples

[edit]

Existence of an algebraic closure and splitting fields

[edit]

Let be the set of all monic irreducible polynomialsinK[x]. For each , introduce new variables where . Let R be the polynomial ring over K generated by for all and all . Write

with . Let I be the idealinR generated by the . Since I is strictly smaller than R, Zorn's lemma implies that there exists a maximal ideal MinR that contains I. The field K1=R/M has the property that every polynomial with coefficients in K splits as the product of and hence has all roots in K1. In the same way, an extension K2ofK1 can be constructed, etc. The union of all these extensions is the algebraic closure of K, because any polynomial with coefficients in this new field has its coefficients in some Kn with sufficiently large n, and then its roots are in Kn+1, and hence in the union itself.

It can be shown along the same lines that for any subset SofK[x], there exists a splitting fieldofS over K.

Separable closure

[edit]

An algebraic closure KalgofK contains a unique separable extension KsepofK containing all (algebraic) separable extensions of K within Kalg. This subextension is called a separable closureofK. Since a separable extension of a separable extension is again separable, there are no finite separable extensions of Ksep, of degree > 1. Saying this another way, K is contained in a separably-closed algebraic extension field. It is unique (up to isomorphism).[7]

The separable closure is the full algebraic closure if and only if K is a perfect field. For example, if K is a field of characteristic p and if X is transcendental over K, is a non-separable algebraic field extension.

In general, the absolute Galois groupofK is the Galois group of Ksep over K.[8]

See also

[edit]

References

[edit]
  1. ^ McCarthy (1991) p.21
  • ^ M. F. Atiyah and I. G. Macdonald (1969). Introduction to commutative algebra. Addison-Wesley publishing Company. pp. 11–12.
  • ^ a b Kaplansky (1972) pp.74-76
  • ^ Banaschewski, Bernhard (1992), "Algebraic closure without choice.", Z. Math. Logik Grundlagen Math., 38 (4): 383–385, doi:10.1002/malq.19920380136, Zbl 0739.03027
  • ^ Mathoverflow discussion
  • ^ Brawley, Joel V.; Schnibben, George E. (1989), "2.2 The Algebraic Closure of a Finite Field", Infinite Algebraic Extensions of Finite Fields, Contemporary Mathematics, vol. 95, American Mathematical Society, pp. 22–23, ISBN 978-0-8218-5428-0, Zbl 0674.12009.
  • ^ McCarthy (1991) p.22
  • ^ Fried, Michael D.; Jarden, Moshe (2008). Field arithmetic. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Vol. 11 (3rd ed.). Springer-Verlag. p. 12. ISBN 978-3-540-77269-9. Zbl 1145.12001.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Algebraic_closure&oldid=1205338058"

    Category: 
    Field extensions
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 9 February 2024, at 12:09 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki