Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition  





2 Flat pullback and proper pushforward  





3 See also  





4 References  














Algebraic cycle






Ελληνικά
Français


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inmathematics, an algebraic cycle on an algebraic variety V is a formal linear combination of subvarietiesofV. These are the part of the algebraic topologyofV that is directly accessible by algebraic methods. Understanding the algebraic cycles on a variety can give profound insights into the structure of the variety.

The most trivial case is codimension zero cycles, which are linear combinations of the irreducible components of the variety. The first non-trivial case is of codimension one subvarieties, called divisors. The earliest work on algebraic cycles focused on the case of divisors, particularly divisors on algebraic curves. Divisors on algebraic curves are formal linear combinations of points on the curve. Classical work on algebraic curves related these to intrinsic data, such as the regular differentials on a compact Riemann surface, and to extrinsic properties, such as embeddings of the curve into projective space.

While divisors on higher-dimensional varieties continue to play an important role in determining the structure of the variety, on varieties of dimension two or more there are also higher codimension cycles to consider. The behavior of these cycles is strikingly different from that of divisors. For example, every curve has a constant N such that every divisor of degree zero is linearly equivalent to a difference of two effective divisors of degree at most N. David Mumford proved that, on a smooth complete complex algebraic surface S with positive geometric genus, the analogous statement for the group of rational equivalence classes of codimension two cycles in S is false.[1] The hypothesis that the geometric genus is positive essentially means (by the Lefschetz theorem on (1,1)-classes) that the cohomology group contains transcendental information, and in effect Mumford's theorem implies that, despite having a purely algebraic definition, it shares transcendental information with . Mumford's theorem has since been greatly generalized.[2]

The behavior of algebraic cycles ranks among the most important open questions in modern mathematics. The Hodge conjecture, one of the Clay Mathematics Institute's Millennium Prize Problems, predicts that the topology of a complex algebraic variety forces the existence of certain algebraic cycles. The Tate conjecture makes a similar prediction for étale cohomology. Alexander Grothendieck's standard conjectures on algebraic cycles yield enough cycles to construct his category of motives and would imply that algebraic cycles play a vital role in any cohomology theory of algebraic varieties. Conversely, Alexander Beilinson proved that the existence of a category of motives implies the standard conjectures. Additionally, cycles are connected to algebraic K-theory by Bloch's formula, which expresses groups of cycles modulo rational equivalence as the cohomology of K-theory sheaves.

Definition

[edit]

Let X be a scheme which is finite type over a field k. An algebraic r-cycleonX is a formal linear combination

ofr-dimensional closed integral k-subschemes of X. The coefficient ni is the multiplicityofVi. The set of all r-cycles is the free abelian group

where the sum is over closed integral subschemes VofX. The groups of cycles for varying r together form a group

This is called the group of algebraic cycles, and any element is called an algebraic cycle. A cycle is effectiveorpositive if all its coefficients are non-negative.

Closed integral subschemes of X are in one-to-one correspondence with the scheme-theoretic points of X under the map that, in one direction, takes each subscheme to its generic point, and in the other direction, takes each point to the unique reduced subscheme supported on the closure of the point. Consequently can also be described as the free abelian group on the points of X.

A cycle isrationally equivalent to zero, written , if there are a finite number of -dimensional subvarieties of and non-zero rational functions such that , where denotes the divisor of a rational function on Wi. The cycles rationally equivalent to zero are a subgroup , and the group of r-cycles modulo rational equivalence is the quotient

This group is also denoted . Elements of the group

are called cycle classesonX. Cycle classes are said to be effectiveorpositive if they can be represented by an effective cycle.

IfX is smooth, projective, and of pure dimension N, the above groups are sometimes reindexed cohomologically as

and

In this case, is called the Chow ringofX because it has a multiplication operation given by the intersection product.

There are several variants of the above definition. We may substitute another ring for integers as our coefficient ring. The case of rational coefficients is widely used. Working with families of cycles over a base, or using cycles in arithmetic situations, requires a relative setup. Let , where S is a regular Noetherian scheme. An r-cycle is a formal sum of closed integral subschemes of X whose relative dimension is r; here the relative dimension of is the transcendence degree of over minus the codimension of inS.

Rational equivalence can also be replaced by several other coarser equivalence relations on algebraic cycles. Other equivalence relations of interest include algebraic equivalence, homological equivalence for a fixed cohomology theory (such as singular cohomology or étale cohomology), numerical equivalence, as well as all of the above modulo torsion. These equivalence relations have (partially conjectural) applications to the theory of motives.

Flat pullback and proper pushforward

[edit]

There is a covariant and a contravariant functoriality of the group of algebraic cycles. Let f : XX' be a map of varieties.

Iffisflat of some constant relative dimension (i.e. all fibers have the same dimension), we can define for any subvariety Y' ⊂ X':

which by assumption has the same codimension as Y.

Conversely, if fisproper, for Y a subvariety of X the pushforward is defined to be

where n is the degree of the extension of function fields [k(Y) : k(f(Y))] if the restriction of ftoYisfinite and 0 otherwise.

By linearity, these definitions extend to homomorphisms of abelian groups

(the latter by virtue of the convention) are homomorphisms of abelian groups. See Chow ring for a discussion of the functoriality related to the ring structure.

See also

[edit]

References

[edit]
  1. ^ Mumford, David, Rational equivalence of 0-cycles on surfaces, J. Math. Kyoto Univ. 9-2 (1969) 195–204.
  • ^ Voisin, Claire, Chow Rings, Decomposition of the Diagonal, and the Topology of Families, Annals of Mathematics Studies 187, February 2014, ISBN 9780691160504.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Algebraic_cycle&oldid=1063716045"

    Category: 
    Algebraic geometry
     



    This page was last edited on 4 January 2022, at 14:41 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki