Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Preparation  





2 Uses  





3 Reactions  



3.1  Polymerization  





3.2  Hydrosilylation  







4 See also  





5 References  














Allyl glycidyl ether






Deutsch
Esperanto
Nederlands
Suomi
ி
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Allyl glycidyl ether
Skeletal structure of allyl glycidyl ether
Names
IUPAC name

2-(prop-2-enoxymethyl)oxirane

Other names

2-[(Allyloxy)methyl]oxirane
1-Allyloxy-2,3-epoxypropane
Glycidyl allyl ether
[(2-Propenyloxy)methyl] oxirane[1]

Identifiers

CAS Number

3D model (JSmol)

ChemSpider
ECHA InfoCard 100.003.131 Edit this at Wikidata
EC Number
  • 203-442-4

PubChem CID

UNII

CompTox Dashboard (EPA)

  • InChI=1S/C6H10O2/c1-2-3-7-4-6-5-8-6/h2,6H,1,3-5H2

    Key: LSWYGACWGAICNM-UHFFFAOYSA-N

  • InChI=1/C6H10O2/c1-2-3-7-4-6-5-8-6/h2,6H,1,3-5H2

    Key: LSWYGACWGAICNM-UHFFFAOYAR

  • C=CCOCC1CO1

Properties

Chemical formula

C6H10O2
Molar mass 114.144 g·mol−1
Appearance Colorless liquid[1]
Odor pleasant[1]
Density 0.97 g/mL (20 °C)[1]
Melting point −100 °C; −148 °F; 173 K[1]
Boiling point 154 °C; 309 °F; 427 K[1]

Solubility in water

14% (20°C)[1]
Solubilityinorganic solvents miscible (acetone, toluene, octane)[2]
Vapor pressure 2 mmHg (20 °C)[1]

Refractive index (nD)

1.4348 (20 °C)[2][3]
Hazards
Occupational safety and health (OHS/OSH):

Main hazards

poisonous, mild irritant[2]
GHS labelling:

Signal word

Danger

Hazard statements

H226, H351, H341, H332, H302, H335, H315, H318, H317, H412
Flash point 57 °C; 135 °F; 330 K[1]
Lethal dose or concentration (LD, LC):

LC50 (median concentration)

270 ppm (mouse, 4 hr)
670 ppm (rat, 8 hr)[4]
NIOSH (US health exposure limits):

PEL (Permissible)

10 ppm (45 mg/m3)[1]

REL (Recommended)

TWA 5 ppm (22 mg/m3) ST 10 ppm (44 mg/m3) [skin][1]

IDLH (Immediate danger)

50 ppm[1]

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Infobox references

Allyl glycidyl ether is an organic compound used in adhesives and sealants and as a monomer for polymerization reactions. It is formally the condensation productofallyl alcohol and glycidol via an ether linkage. Because it contains both an alkene and an epoxide group, either group can be reacted selectively to yield a product where the other functional group remains intact for future reactions.

Preparation[edit]

AGE is prepared commercially by the etherification of allyl alcohol with epichlorohydrin. Hydrogen chloride, the byproduct of their condensation, is removed with a base.[5]

The synthesis of allyl glycidyl ether by condensation of allyl alcohol and epichlorohydrin
The synthesis of allyl glycidyl ether by condensation of allyl alcohol and epichlorohydrin

AGE can also be synthesized by monoepoxidationofdiallyl ether.[6][7]

The synthesis of allyl glycidyl ether by epoxidation of diallyl ether
The synthesis of allyl glycidyl ether by epoxidation of diallyl ether

Diepoxidation of the second alkene would produce diglycidyl ether.

Allyl glycidyl ether is chiral. Most routes yield a racemic mixture. Epoxidation using monooxygenase enzyme proceeds enantioselectively.[8]

The enantioselective synthesis of allyl glycidyl ether by microbial epoxidation of diallyl ether
The enantioselective synthesis of allyl glycidyl ether by microbial epoxidation of diallyl ether

Alternately, nucleophilic cyclization of either chirality of the secondary alcohol onto a primary tosylate gives the chiral epoxide product.[9]

The synthesis of a single enantiomer of allyl glycidyl ether by cyclization of a single enantiomer of the acylic alcohol
The synthesis of a single enantiomer of allyl glycidyl ether by cyclization of a single enantiomer of the acylic alcohol

Uses[edit]

Allyl glycidyl ether is used in adhesives and sealants[2] and as a monomer for various types of polymer preparations.

Reactions[edit]

Polymerization[edit]

As a bifunctional compound, the alkene group or the epoxide group can be reacted selectively to yield a product where the other functional group remains intact for future reactions. For example, either one of them could be used for linear polymerization, and then the other used for cross-linking.[6]

Radical polymerization of the propylene portion in the presence of methyl acrylate yields a block copolymer with a high epoxide content.[10] Similarly, it is can be used in the production of polyvinylcaprolactam as a chain transfer agent.[11]

Nucleophilic polymerization of the epoxide groups gives a material that has the same backbone as polyethylene glycol, with allyl-ether side chains. The additional Lewis basic ether sites alter ion transport in the polymer and also affect the transient inter-chain crosslinking and glass transition temperature in the presence of metal ions. These properties suggest that the material may have applications as an alternative electrolyte for lithium-ion batteries. The alkenes can be elaborated into short polyethylene-glycol oligomers to further increase the ion-binding ability and enhance the resulting material properties.[12]

Block copolymers with ethylene oxide form micelles, which could be useful for encapsulating other molecules as part of a drug delivery system. The alkenes of these macromolecular structures can also be cross-linked via radical polymerization.[13]

Lewis-acid-catalyzed co-polymerisation with carbon dioxide likewise gives a polycarbonate material with allyl side chains that can be further elaborated.[14]

Hydrosilylation[edit]

Rather than polymerization, the alkene group can undergo a hydrosilylation reaction with siloxanes in the presence of chloroplatinic acid as catalyst.[15] Like the polymerization reactions, this reaction also leaves the epoxide intact. By this reaction, allyl glycidyl ether finds use as an intermediate in the production of silane coatings for electrical applications.[16]

See also[edit]

References[edit]

  1. ^ a b c d e f g h i j k l NIOSH Pocket Guide to Chemical Hazards. "#0019". National Institute for Occupational Safety and Health (NIOSH).
  • ^ a b c d CID 7838 from PubChem
  • ^ Clayton, G. D. and F. E. Clayton (eds.). Patty's Industrial Hygiene and Toxicology: Volume 2A, 2B, 2C: Toxicology. 3rd ed. New York: John Wiley Sons, 1981-1982., p. 2199
  • ^ "Allyl glycidyl ether". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  • ^ Clayton, G. D.; Clayton, F. E., eds. (1981–1982). Patty's Industrial Hygiene and Toxicology. Vol. 2A, 2B, 2C: Toxicology (3rd ed.). New York: John Wiley Sons. p. 2197.
  • ^ a b Frostick, Frederick C. Jr.; Phillips, Benjamin; Starcher, Paul S. (1959). "Synthesis of Some Epoxy Vinyl Monomers by Epoxidation with Peracetic Acid". J. Am. Chem. Soc. 81 (13): 3350–3356. doi:10.1021/ja01522a048.
  • ^ Wróblewska, Agnieszka; Drewnowska, E.; Gawarecka, A. (August 2016). "The epoxidation of diallyl ether to allyl-glycidyl ether over the TS-1 catalyst". Reaction Kinetics, Mechanisms and Catalysis. 118 (2): 719–931. doi:10.1007/s11144-016-1028-3. S2CID 101802831.
  • ^ Fu, Hong; Newcomb, Martin; Wong, Chi Huey (1991). "Pseudomonas oleovorans monooxygenase-catalyzed asymmetric epoxidation of allyl alcohol derivatives and hydroxylation of a hypersensitive radical probe with the radical ring-opening rate exceeding the oxygen-rebound rate". J. Am. Chem. Soc. 113 (15): 5878–5880. doi:10.1021/ja00015a061.
  • ^ Pederson, Richard L.; Liu, Kevin K. C.; Rutan, James F.; Chen, Lihren; Wong, Chi Huey (1990). "Enzymes in organic synthesis: synthesis of highly enantiomerically pure 1,2-epoxy aldehydes, epoxy alcohols, thiirane, aziridine, and glyceraldehyde 3-phosphate". J. Org. Chem. 55 (16): 4897–4901. doi:10.1021/jo00303a026.
  • ^ Qingbo, Yu; Mingxu, Zhang; Xianhua, Li; Ruke, Bai (October 2007). "Living free-radical copolymerization of allyl glycidyl ether with methyl acrylate". Frontiers of Chemistry in China. 2 (4): 414–418. doi:10.1007/s11458-007-0078-5. S2CID 195308634.
  • ^ Kudyshkin, Mukhitdinova (1999). "Control of the molecular weight of polyvinylcaprolactam". Russian Journal of Applied Chemistry. 72 (10): 1846–1848.
  • ^ Barteau, Katherine P.; Wolffs, Martin; Lynd, Nathaniel A.; Fredrickson, Glenn H.; Kramer, Edward J.; Hawker, Craig J. (2013). "Allyl Glycidyl Ether-Based Polymer Electrolytes for Room Temperature Lithium Batteries". Macromolecules. 46 (22): 8988–8994. Bibcode:2013MaMol..46.8988B. doi:10.1021/ma401267w.
  • ^ Hrubý, M.; Koňák, Č.; Ulbrich, K. (2004). "Poly(allyl glycidyl ether)-block-poly(ethylene oxide): A novel promising polymeric intermediate for the preparation of micellar drug delivery systems". Journal of Applied Polymer Science. 95 (2): 201–211. doi:10.1002/app.21121.
  • ^ Łukaszczyk, Jan; Jaszcz, Katarzyna; Kuran, Witold; Listos, Tomasz (2000). "Synthesis of functional polycarbonates by copolymerization of carbon dioxide with allyl glycidyl ether". Macromolecular Rapid Communications. 21 (11): 754–757. doi:10.1002/1521-3927(20000701)21:11<754::AID-MARC754>3.0.CO;2-O.
  • ^ "Allyl glycidyl ether". Sigma-Aldrich. Retrieved December 24, 2018.
  • ^ Ash, Michael; Ash, Irene, eds. (2007). Handbook of Fillers, Extenders, and Diluents. Synapse Info Resources. p. 224. ISBN 9781890595968.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Allyl_glycidyl_ether&oldid=1197178944"

    Categories: 
    Glycidyl ethers
    Allyl compounds
    Hidden categories: 
    PubChem ID (CID) same as Wikidata
    CS1: long volume value
    Articles without EBI source
    Articles without KEGG source
    ECHA InfoCard ID from Wikidata
    Chembox having GHS data
    Articles containing unverified chemical infoboxes
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 19 January 2024, at 13:44 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki